Immunotherapy of cancer has made tremendous progress in recent years, as demonstrated by the remarkable clinical responses obtained from adoptive cell transfer (ACT) of patient-derived tumor infiltrating lymphocytes, chimeric antigen receptor (CAR)-modified T cells (CAR-T) and T cell receptor (TCR)-engineered T cells (TCR-T). TCR-T uses specific TCRS optimized for tumor engagement and can recognize epitopes derived from both cell-surface and intracellular targets, including tumor-associated antigens, cancer germline antigens, viral oncoproteins, and tumor-specific neoantigens (neoAgs) that are largely sequestered in the cytoplasm and nucleus of tumor cells. Moreover, as TCRS are naturally developed for sensitive antigen detection, they are able to recognize epitopes at far lower concentrations than required for CAR-T activation.
View Article and Find Full Text PDFCheckpoint inhibitors and adoptive cell therapy provide promising options for treating solid cancers such as HBV-related HCC, but they have limitations. We tested the potential to combine advantages of each approach, genetically reprogramming T cells specific for viral tumor antigens to overcome exhaustion by down-modulating the co-inhibitory receptor PD-1. We developed a novel lentiviral transduction protocol to achieve preferential targeting of endogenous or TCR-redirected, antigen-specific CD8 T cells for shRNA knockdown of PD-1 and tested functional consequences for antitumor immunity.
View Article and Find Full Text PDFCarcinoembryonic antigen (CEA) is a candidate target for cellular immunotherapy of pancreatic cancer. In this study, we have characterized the antigen-specific function of autologous cytotoxic T lymphocytes (CTL) specific for the HLA-A2-restricted peptide, pCEA691-699, isolated from the peripheral T-cell repertoire of pancreatic cancer patients and sought to determine if PD-L1 and TIM-3 blockade could enhance CTL function. CD8 T-cell lines were generated from peripheral blood mononuclear cells of 18 HLA-A2 patients with pancreatic cancer and from 15 healthy controls.
View Article and Find Full Text PDFImmunotherapy of cancer envisions the adoptive transfer of T-cells genetically engineered with tumor-specific heterodimeric α/β T-cell receptors (TCRα/β). However, potential mispairing of introduced TCRα/β-chains with endogenous β/α-ones may evoke unpredictable autoimmune reactivities. A novel single chain (sc)TCR format relies on the fusion of the Vα-Linker-Vβ-fragment to the TCR Cβ-domain and coexpression of the TCR Cα-domain capable of recruiting the natural CD3-complex for full and hence, native T-cell signaling.
View Article and Find Full Text PDFAg receptors used for cancer immunotherapy are often directed against tumor-associated Ags also expressed in normal tissues. Targeting of such Ags can result in unwanted autoimmune attack of normal tissues or induction of tolerance in therapeutic T cells. We used a murine model to study the phenotype and function of T cells redirected against the murine double minute protein 2 (MDM2), a tumor-associated Ag that shows low expression in many normal tissues.
View Article and Find Full Text PDFHBV-DNA integration frequently occurs in HBV-related hepatocellular carcinoma (HCC), but whether HBV antigens are expressed in HCC cells and can be targeted by immune therapeutic strategies remains controversial. Here, we first characterized HBV antigen expression in HCC metastases, occurring in a patient who had undergone liver transplantation for HBV-related HCC. We then deployed for the first time in HCC autologous T cells, genetically modified to express an HBsAg specific T cell receptor, as therapy against chemoresistant extrahepatic metastases.
View Article and Find Full Text PDFIn this study, we generated human MHC Class I-restricted CD4 T cells specific for Epstein-Barr virus (EBV) and cytomegalovirus (CMV), two herpesviridae associated with lymphoma, nasopharyngeal carcinoma and medulloblastoma, respectively. Retroviral transfer of virus-specific, HLA-A2-restricted TCR-coding genes generated CD4 T cells that recognized HLA-A2/peptide multimers and produced cytokines when stimulated with MHC Class II-deficient cells presenting the relevant viral peptides in the context of HLA-A2. Peptide titration revealed that CD4 T cells had a 10-fold lower avidity than CD8 T cells expressing the same TCR.
View Article and Find Full Text PDFThe function of T-cell receptor (TCR) gene modified T cells is dependent on efficient surface expression of the introduced TCR α/β heterodimer. We tested whether endogenous CD3 chains are rate-limiting for TCR expression and antigen-specific T-cell function. We show that co-transfer of CD3 and TCR genes into primary murine T cells enhanced TCR expression and antigen-specific T-cell function in vitro.
View Article and Find Full Text PDFWe have tested whether affinity-matured TCRs that retain peptide specificity improve the ability of primary human CD8(+) T cells to mount antigen-specific responses. We found that TCR affinity correlated with the speed of T-cell responses. High affinity TCR-antigen interactions rapidly initiated T-cell responses, but low affinity TCR/antigen interactions required longer time periods to elicit the same responses.
View Article and Find Full Text PDFThe cancer testis antigen Preferentially Expressed Antigen of Melanoma (PRAME) is overexpressed in many solid tumours and haematological malignancies whilst showing minimal expression in normal tissues and is therefore a promising target for immunotherapy. HLA-A0201-restricted peptide epitopes from PRAME have previously been identified as potential immunogens to drive antigen-specific autologous CTL responses, capable of lysing PRAME expressing tumour cells. CTL lines, from 13 normal donors and 10 melanoma patients, all of whom were HLA-A0201 positive, were generated against the PRAME peptide epitope PRA(100-108).
View Article and Find Full Text PDFRecently, vaccines against the Wilms Tumor antigen 1 (WT1) have been tested in cancer patients. However, it is currently not known whether physiologic levels of WT1 expression in stem and progenitor cells of normal tissue result in the deletion or tolerance induction of WT1-specific T cells. Here, we used an human leukocyte antigen-transgenic murine model to study the fate of human leukocyte antigen class-I restricted, WT1-specific T cells in the thymus and in the periphery.
View Article and Find Full Text PDFFine needle aspirates from Burkitt's lymphoma and other tumours transferred directly into ThinPrep® PreservCyt® (Cytyc UK Ltd, Crawley, UK) buffered alcohol fixative retain their cellular and viral antigens and nucleic acids for many months at ambient temperatures. Despite the presence of blood and debris, cells dried onto slides from droplets and post-fixed in formalin, or sections of paraffin-embedded cell blocks from formalin post-fixed pellets, prove adequate for morphology, immunocytochemistry, in-situ hybridization and molecular biological analyses. Where there is lack of expertise in making thin smears or hospitals lack pathology laboratories and services, PreservCyt® provides an excellent medium for transport elsewhere for diagnosis and research.
View Article and Find Full Text PDFBackground & Aims: Virus-specific T cells capable of controlling HBV and eliminating hepatocellular carcinoma (HCC) expressing HBV antigens are deleted or dysfunctional in patients with chronic HBV or HBV-related HCC. The goal of this study was to determine if T cell receptor (TCR) gene transfer can reconstitute HBV-specific T cell immunity in lymphocytes of chronic HBV patients and investigate whether HCC cells with natural HBV-DNA integration can be recognized by genetically modified T cells.
Methods: We used vector-mediated gene transfer to introduce HLA-A2-restricted, HBV-specific TCRs into T cells of chronic HBV as well as HBV-related HCC patients.
Regulatory T cells (Tregs) can suppress a wide range of immune cells, making them an ideal candidate for the treatment of autoimmunity. The potential clinical translation of targeted therapy with antigen-specific Tregs is hampered by the difficulties of isolating rare specificities from the natural polyclonal T cell repertoire. Moreover, the initiating antigen is often unknown in autoimmune disease.
View Article and Find Full Text PDFBackground: The Wilms' tumor antigen (WT1) is an attractive target for immunotherapy of leukemia. In the past, we isolated and characterized the specificity and function of a WT1-specific T-cell receptor. The goal of this translational study was to develop a safe and efficient WT1-T-cell receptor retroviral vector for an adoptive immunotherapy trial with engineered T cells.
View Article and Find Full Text PDFT cell responses to MHC-mismatched transplants can be mediated via direct recognition of allogeneic MHC molecules on the cells of the transplant or via recognition of allogeneic peptides presented on the surface of recipient APCs in recipient MHC molecules - a process known as indirect recognition. As CD4(+)CD25(+) Tregs play an important role in regulating alloresponses, we investigated whether mouse Tregs specific for allogeneic MHC molecules could be generated in vitro and could promote transplantation tolerance in immunocompetent recipient mice. Tregs able to directly recognize allogeneic MHC class II molecules (dTregs) were obtained by stimulating CD4(+)CD25(+) cells from C57BL/6 mice (H-2(b)) with allogeneic DCs from BALB/c mice (H-2(d)).
View Article and Find Full Text PDFThe transfer of T cell receptor (TCR) genes allows to endow T cells with a new antigen specificity. For clinical applications of TCR-redirected T cells, efficient functional expression of the transgenic TCR is a key prerequisite. Here, we compared the influence of the transgene cassette on the expression and function of the murine TCR P14 (recognizing a LCMV gp33 epitope) and the human TCR WT-1 (recognizing an epitope of the tumor-associated antigen WT-1).
View Article and Find Full Text PDFT-cell-based antigen-specific immunotherapy targeting tumour-associated antigens offers the potential for cancer immunotherapy. However, the majority of identified tumour-associated antigens are also expressed at low levels in normal tissues and mechanisms of tolerance induction are likely to affect the quality of T-cell responses to such antigens. In this study a T-cell receptor transgenic model was developed to determine the magnitude of T-cell tolerance to the tumour-associated antigen murine double minute-2 (MDM2), a widely expressed protein that is found at elevated levels in many tumours.
View Article and Find Full Text PDFWe have previously described the functional activity of a human TCR specific for an HLA-A2-presented peptide derived from the Wilms tumor Ag 1 (WT1). Recent studies showed that the expression and function of human TCR was improved by the introduction of an additional disulfide bond between the alpha- and beta-chains or by the exchange of the human constant region for murine sequences. In this study, we analyzed the functional activity of WT1-TCR variants expressed in Jurkat cells and in primary T cells.
View Article and Find Full Text PDFAdoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy.
View Article and Find Full Text PDF