Publications by authors named "Shao-Ying Ai"

The bioavailability of heavy metals in soil and the physiological activities of rice determine the accumulation of heavy metals in brown rice. In this study, a field experiment was conducted in a rice paddy in which the total amount of Cd in the soil did not exceed the national standard, whereas the Cd in rice grains was at risk of overreaching in the suburbs of Guangzhou city. The bioavailability of heavy metals in the soil and the physiological barrier of rice were taken as the starting point.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in the agricultural soils of China is a serious and growing environmental problem that urgently needs to be controlled and completely remediated. The biogeochemical cycles of nitrogen (N), sulfur (S), and iron (Fe), and the coupled cycles of Fe-N and Fe-S have been reported to control Cd transportation in the soil-rice system. Exploring practical remediation strategies for Cd from the perspective of the application of nutrients such as N, S, and Fe for rice growth is expected to obtain farm-specific and state-of-the-art technologies and products to reduce the accumulation of Cd in rice grains.

View Article and Find Full Text PDF

The remediation of cadmium (Cd) contaminated paddy soils has become an important issue in the field of remediation of agricultural soils contaminated by heavy metals. The iron (Fe) redox cycle (referring to the fluctuation of iron between the ferrous (Ⅱ) and ferric (Ⅲ) oxidation states) exhibits a unique role in the transportation of Cd in the soil-rice system. The exploration of practical remediation strategies for Cd from the perspective of the Fe redox cycle is expected to obtain some state-of-the-art technologies and products to reduce Cd accumulation in rice grains.

View Article and Find Full Text PDF