Pulmonary arterial hypertension (PAH) is a common vascular disease, and pulmonary vascular remodeling is a pivotal pathophysiological mechanism of PAH. Major pathological changes of pulmonary arterial remodeling, including proliferation, hypertrophy and enhanced secretory activity, can occur in pulmonary artery smooth muscle cells (PASMCs). Multiple active factors and cytokines play important roles in PAH.
View Article and Find Full Text PDFPulmonary arterial hypertension (PAH) is a malignant cardiovascular disease. Eukaryotic initiation factor 2α (eIF2α) plays an important role in the proliferation of pulmonary artery smooth muscle cells (PASMCs) in hypoxia-induced pulmonary hypertension (HPH) rats. However, the regulatory mechanism of eIF2α remains poorly understood in PAH rats.
View Article and Find Full Text PDFPulmonary hypertension (PH) is complex disease as a result of obstructive pulmonary arterial remodeling, which in turn results in elevated pulmonary arterial pressure (PAP) and subsequent right ventricular heart failure, eventually leading to premature death. However, there is still a lack of a diagnostic blood-based biomarker and therapeutic target for PH. Because of the difficulty of diagnosis, new and more easily accessible prevention and treatment strategy are being explored.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
October 2023
Vascular diseases are a major threat to human health, characterized by high rates of morbidity, mortality, and disability. VSMC senescence contributes to dramatic changes in vascular morphology, structure, and function. A growing number of studies suggest that VSMC senescence is an important pathophysiological mechanism for the development of vascular diseases, including pulmonary hypertension, atherosclerosis, aneurysm, and hypertension.
View Article and Find Full Text PDFThe abnormal proliferation of vascular smooth muscle cells (VSMCs) is a key pathological characteristic of vascular proliferative diseases. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays an important role in regulating cell growth, motility, proliferation, and survival, as well as gene expression in response to hypoxia, growth factors, and nutrients. Increasing evidence shows that mTOR also regulates VSMC proliferation in vascular proliferative diseases and that mTOR inhibitors, such as rapamycin, effectively restrain VSMC proliferation.
View Article and Find Full Text PDFFront Cell Dev Biol
November 2021
The dynamic balance of cardiomyocytes and neurons is essential to maintain the normal physiological functions of heart and brain. If excessive cells die in tissues, serious Cardio-Cerebrovascular Diseases would occur, namely, hypertension, myocardial infarction, and ischemic stroke. The regulation of cell death plays a role in promoting or alleviating Cardio-Cerebrovascular Diseases.
View Article and Find Full Text PDFCardio-Cerebrovascular Disease is a collective term for cardiovascular disease and cerebrovascular disease, being a serious threat to human health. A growing number of studies have proved that the content of inflammatory factors or mediators determines the stability of vascular plaque and the incidence of cardio-cerebrovascular event, and involves in the process of Cardio-Cerebrovascular Diseases. Interleukin-6 is a widely used cytokine that causes inflammation and oxidative stress, which would further result in cardiac and cerebral injury.
View Article and Find Full Text PDFPulmonary hypertension (PH) is a critical and dangerous disease in cardiovascular system. Pulmonary vascular remodeling is an important pathophysiological mechanism for the development of pulmonary arterial hypertension. Pulmonary artery smooth muscle cell (PASMC) proliferation, hypertrophy, and enhancing secretory activity are the main causes of pulmonary vascular remodeling.
View Article and Find Full Text PDFMicroglia-associated neuroinflammation plays an important role in the pathophysiology of ischemic stroke. Microglial activation and polarization, and the inflammatory response mediated by these cells play important roles in the development, progression and outcome of brain injury after ischemic stroke. Currently, there is no effective strategy for treating ischemic stroke in clinical practice.
View Article and Find Full Text PDFMammalian Target of Rapamycin (mTOR) is involved in the proliferation and survival of pulmonary artery smooth muscle cells (PASMCs) in human pulmonary hypertension (PH) and animal PH models, and miRNAs are reported to play a key role in modulation of the proliferation of PASMCs. The purposes of this study are to determine the functions of miR-100 and mTOR in cardiovascular remodeling of the hypoxic PH rats and to clarify the correlation between them. We established a rat model of hypoxic PH, which showed an increase in right ventricle systolic pressure, right ventricular and pulmonary vascular remodeling, accompanied by an up-regulation of mTOR and a down-regulation of miR-100.
View Article and Find Full Text PDF