The straightforward construction of stereogenic centers bearing unprotected functional groups, as in nature, has been a persistent pursuit in synthetic chemistry. Abundant applications of free enantioenriched allyl alcohol and allyl hydroxylamine motifs have made the asymmetric hydration and hydroaminoxylation of conjugated dienes from water and hydroxylamine, respectively, intriguing and efficient routes that have, however, been unachievable thus far. A fundamental challenge is the failure to realize transition-metal-catalyzed enantioselective C-O bond constructions via hydrofunctionalization of conjugated dienes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2023
Electronically matched nucleophilic 1,6-conjugate addition has been well studied and widely applied in synthetic areas. In contrast, nucleophilic 1,5-conjugate addition represents an electronically forbidden process and is considered unfeasible. Here, we describe modular protocols for 1,5-conjugate addition reactions via palladium hydride catalysis.
View Article and Find Full Text PDFHerein we describe a protocol for the unprecedented stereodivergent synthesis of tertiary fluoride-tethered allenes bearing a stereogenic center and stereogenic axis via Cu/Pd synergistic catalysis. A broad scope of conjugated enynes are coupled with various α-fluoroesters in high yields with high diastereoselectivities and generally >99% ee. In addition, the four stereoisomers of the allene products ensure precise access to the corresponding four stereoisomers of the fluorinated hydrofurans via a novel stereodivergent axial-to-central chirality transfer process.
View Article and Find Full Text PDF