The influence of hydrophobic-block length on solubilisation capacity was examined for micelles of E(m)B(n) copolymers (E=oxyethylene, B=oxybutylene, subscripts denote number-average block lengths in repeat units) with B-block lengths in the range of 30-76 and with E-blocks of sufficient length to ensure the formation of spherical micelles. Griseofulvin was used as a model poorly-water-soluble drug known to be almost exclusively solubilised in the micellar core. Combination of solubilisation data with those of a previous study has shown that the amount of drug solubilised per gram of hydrophobe is essentially independent of B-block length when this exceeds about 15 B units, suggesting that core size is not a major influence on solubilisation.
View Article and Find Full Text PDFThe dependence of log(cmc) on hydrophobic block length n was examined for E(m)B(n) copolymers (E=oxyethylene, B=oxybutylene, subscripts denote number-average block lengths in repeat units) with n in the range 30-76. Combination with published data for E(m)B(n) diblock copolymers with shorter E-blocks shows two changes of slope in the log(cmc)-n plot corresponding to the onset of unimolecular micelle formation at n approximately 12 and completion of this process at n approximately 30. The results are discussed with reference to published data for E(m)L(n) and E(m)CL(n) (L from d,L-lactide; CL from epsilon-caprolactone) copolymers, which show similar behaviour.
View Article and Find Full Text PDFTwo oxyethylene/oxybutylene block copolymers (E(40)B(79) and E(47)B(62)), which exhibit body-centered cubic sphere (bcc) and hexagonally packed cylindrical (hex) melt morphologies in bulk, respectively, were blended with nanoclay of montmorillonite (MMT). The effects of MMT on the morphology and crystallization of E(40)B(79) and E(47)B(62) were studied with small-angle x-ray scattering, wide-angle x-ray diffraction, and differential scanning calorimeter. It is found that the E block in the block copolymers can intercalate into the galleries of MMT, leading to a larger layer spacing than that of neat MMT.
View Article and Find Full Text PDFThe thermal stability of the thin film morphology of two symmetric oxyethylene/oxybutylene block copolymers (E76B38 and E114B56) on mica and silicon was investigated via atomic force microscopy (AFM). It is found that morphological transition of EmBn thin films during melting is strongly dependent on the molecular weight of the diblock copolymers and their interaction with the substrate. For E76B38 on mica, a single-layered structure transforms into a double-layered structure upon melting, but the same polymer on silicon retains a single-layered structure after melting and spreads quickly to wet-out the silicon surface.
View Article and Find Full Text PDFThree symmetrical semicrystalline oxyethylene/oxybutylene block copolymers (EmBn) were spin-coated on different substrates including silicon, hydrophobically modified silicon, and mica. The effects of surface property on the dewetting behavior of EmBn thin films and the chain orientation of the crystalline block were investigated with atomic force microscopy and grazing incidence X-ray diffraction . The EmBn thin films on silicon exhibit an autophobic dewetting behavior, while ordinary dewetting occurs for the thin films on modified silicon.
View Article and Find Full Text PDFTwo tapered statistical copolymers were prepared by the oxyanionic polymerization of ethylene oxide and propylene oxide and characterized by gel permeation chromatography and 13C NMR spectroscopy. We denote the copolymers t-E/P38 and t-E/P30, where E = oxyethylene, OCH2CH2, and P = oxypropylene, OCH2CH(CH3), and the number denotes the mole percentage P. In each case the copolymer chain length was ca.
View Article and Find Full Text PDF