The conformational distribution and mutual interconversion of thermally activated delayed fluorescence (TADF) emitters significantly affect the exciton utilization. However, their influence on the photophysics in amorphous film states is still not known due to the lack of a suitable quantitative analysis method. Herein, we used temperature-dependent time-resolved photoluminescence spectroscopy to quantitatively measure the relative populations of the conformations of a TADF emitter for the first time.
View Article and Find Full Text PDFThermally activated delayed fluorescence (TADF) emitters with aggregation-induced emission (AIE) features are hot candidates for non-doped organic light-emitting diodes (OLEDs), as they are highly emissive in solid states upon photoexcitation. Nevertheless, not every AIE-TADF emitter in the past had guaranteed decent efficiencies in non-doped devices, indicating that the AIE character alone does not necessarily afford ideal non-doped TADF emitters. As intermolecular electron-exchange interaction that involves long-lived triplet excitons plays a dominant role in the whole quenching process of TADF, we anticipate that it is the main reason for the different electroluminescence performances of AIE-TADF emitters.
View Article and Find Full Text PDFCadmium, a highly toxic environmental pollutant, is reported to induce toxicity and apoptosis in multiple organs and cells, all possibly contributing to apoptosis in certain pathophysiologic situations. Previous studies have described that cadmium toxicity induces biochemical and physiological changes in the heart and finally leads to cardiac dysfunctions, such as decreasing contractile tension, rate of tension development, heart rate, coronary flow rate and atrioventricular node conductivity. Although many progresses have been made, the mechanism responsible for cadmium-induced cellular alternations and cardiac toxicity is still not fully understood.
View Article and Find Full Text PDFViral myocarditis (VM), a severe clinical condition characterized by cardiac inflammation, is most frequently induced as a result of coxsackievirus infection. Evidence suggests that microRNAs may have significant roles in the progression of cardiac injury during coxsackievirus infection. Concurrently, microRNA (miR)-214 was found to be upregulated in the plasma and myocardial cells during this process.
View Article and Find Full Text PDFZhonghua Liu Xing Bing Xue Za Zhi
September 2009
Objective: To sequence the whole-genome of enterovirus 71 (EV71) srtain isolated from patient with hand, foot and mouth in Henan province in 2008.
Methods: Eight overlapping clones covering the whole viral genome were obtained by RT-PCR and the sequences were determined by Sanger dideoxg-mediated chain termination method.
Results: Data it showed that the full length of enterovirus 71 (EV71) HENAN08 genome (not including Poly A tail) is 7405 bp.