Publications by authors named "Shao-Lei Geng"

Chinese hamster ovary (CHO) cells are the most widely used platform for recombinant therapeutic protein (RTP) production. Traditionally, the development of CHO cell lines has mainly depended on random integration of transgenes into the genome, which is not conducive to stable long-term expression. Cytidine monophosphate N-acetylneuraminic acid hydroxylase (CMAH) is expressed in CHO cells and produces N-hydroxyacetylneuraminic acid, which may cause a human immune response.

View Article and Find Full Text PDF

The baculovirus expression vector system (BEVS) has been widely used to produce recombinant proteins because of several advantages, such as eukaryotic post-translational modifications similar to those in mammalian cells, high expression levels and safety, and large gene capacity. Usually, insect cell culture requires 5%‒10% fetal bovine serum, which has many adverse effects, including high cost, heterogeneity between batches, complex composition, and pollution risks. Therefore, serum-free medium (SFM) is indispensable for the production of recombinant proteins in insect cell culture.

View Article and Find Full Text PDF

Mammalian cell lines are frequently used as the preferred host cells for producing recombinant therapeutic proteins (RTPs) having post-translational modified modification similar to those observed in proteins produced by human cells. Nowadays, most RTPs approved for marketing are produced in Chinese hamster ovary (CHO) cells. Recombinant therapeutic antibodies are among the most important and promising RTPs for biomedical applications.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are considered a major cause of ageing and ageing-related diseases through protein carbonylation. Little is known about the molecular mechanisms that confer protection against ROS. Here, we observed that, compared with nondiapause-destined pupae, high protein carbonyl levels are present in the brains of diapause-destined pupae, which is a 'non-ageing' phase in the moth Helicoverpa armigera.

View Article and Find Full Text PDF

Previous studies have shown that high physiological levels of reactive oxygen species (ROS) in the brain promote pupal diapause, which extends the pupal lifespan. However, the molecular mechanisms of ROS generation are unclear. In this paper, we found that mitochondrial ROS (mtROS) levels in the brains of Helicoverpa armigera diapause-destined pupae (DP) were higher and that the expression of cytochrome oxidase subunit IV (COXIV) was lower than in NP.

View Article and Find Full Text PDF

Diapause is a complex physiological response that allows insects to survive unfavorable environmental conditions, and many signaling pathways participate in regulating this process. However, little is known about TOR signaling in the regulation of diapause. In this study, we found that the TOR pathway-related proteins TOR and Raptor are expressed at low levels in the brains of diapause-destined pupae of Helicoverpa armigera, consistent with a previous report that TOR signaling is associated with development.

View Article and Find Full Text PDF

Background: Diapause is the arrest of the development of insects and can be used for the development of effective agricultural pest management strategies. Heat shock protein 70 (Hsp70) is reported to be up-regulated during diapause to maintain survival in some insect species. However, its regulatory mechanism is unknown.

View Article and Find Full Text PDF

The transforming growth factor-β (TGF-β) superfamily signaling pathway contains two general branches, known as TGF-β and bone morphogenetic protein (BMP), that regulate development in animals. It is well known that TGF-β superfamily signaling participates in the regulation of dauer (lifespan extension) in Caenorhabditis elegans, but little is known about the molecular mechanisms of lifespan extension in the pathway. Diapause, a programmed developmental arrest in insects, is similar to dauer in C.

View Article and Find Full Text PDF

Diapause in insects is akin to dauer in and hibernation in vertebrates. Diapause causes a profound extension of lifespan by low metabolic activity. However, the detailed regulatory mechanisms for low metabolic activity remain unknown.

View Article and Find Full Text PDF

Akt, which is a key kinase in the insulin signaling pathway, plays important roles in glucose metabolism, cell proliferation, transcription and cell migration. Our previous studies indicated that low insulin levels and high p-Akt levels are present in diapause-destined individuals. Here, we show that PI3K, which is upstream of Akt, is low in diapause-destined pupal brains but high in p-Akt levels, implying that p-Akt is modified by factors other than the insulin signaling pathway.

View Article and Find Full Text PDF