neutrophil-activating protein (HP-NAP)-induced production of reactive oxygen species (ROS) by neutrophils and monocytes is regulated by pertussis toxin (PTX)-sensitive G proteins, whereas HP-NAP-induced cytokine secretion by monocytes is mediated by Toll-like receptor 2 (TLR2). However, it is unclear whether TLR2 participates in HP-NAP-induced cytokine secretion by neutrophils. Here, all-trans retinoic acid (ATRA)-induced differentiated HL-60 cells were first employed as a neutrophil model to investigate the molecular mechanisms underlying neutrophil responses to HP-NAP.
View Article and Find Full Text PDFLimited information is currently available concerning HLA class I antigen abnormalities in sarcomatoid hepatocellular carcinoma (sHCC). Here, we have analyzed the growth characteristics and HLA class I antigen status of four sHCC cell lines (sHCC29, sHCC63, sHCC74, and SAR-HCV); the first three were newly established in this study. Among the four, sHCC29 showed the highest growth rate and tumorigenicity in NOD-SCID mice.
View Article and Find Full Text PDFCancer Cell Int
September 2018
Background: Multidrug resistance (MDR) is a major obstacle in breast cancer treatment. The predominant mechanism underlying MDR is an increase in the activity of adenosine triphosphate (ATP)-dependent drug efflux transporters. Sulbactam, a β-lactamase inhibitor, is generally combined with β-lactam antibiotics for treating bacterial infections.
View Article and Find Full Text PDFCharge impurities and polar molecules on the surface of dielectric substrates has long been a critical obstacle to using graphene for its niche applications that involve graphene's high mobility and high sensitivity nature. Self-assembled monolayers (SAMs) have been found to effectively reduce the impact of long-range scatterings induced by the external charges. Yet, demonstrations of scalable device applications using the SAMs technique remains missing due to the difficulties in the device fabrication arising from the strong surface tension of the modified dielectric environment.
View Article and Find Full Text PDFScant information is available about the molecular basis of multiple HLA class I antigen-processing machinery defects in malignant cells, although this information contributes to our understanding of the molecular immunoescape mechanisms utilized by tumor cells and may suggest strategies to counteract them. In the present study we reveal a combination of IFN-γ-irreversible structural and epigenetic defects in HLA class I antigen-processing machinery in a recurrent melanoma metastasis after immunotherapy. These defects include loss of tapasin and one HLA haplotype as well as selective silencing of HLA-A3 gene responsiveness to IFN-γ.
View Article and Find Full Text PDF