Tetrahedral liquids exhibit intriguing thermodynamic and transport properties because of the various ways tetrahedra can be packed and connected. Recently, an unusual temperature dependence of the stretching exponent β in a model tetrahedral liquid ZnCl2 from Tm + 85 K to Tm + 35 K has been reported using neutron-spin echo spectroscopy. This discovery stands in sharp contrast to other glass-forming liquids.
View Article and Find Full Text PDFAn in-depth understanding and characterization of molten salt properties are necessary for the optimized design, efficient operation, and safety assurance of molten salt reactors (MSRs). Investigating molten salt properties in experimental settings can be challenging and time-consuming due to the high temperatures of interest, the salt's corrosiveness, purity and composition control, and health and safety concerns. Therefore, it is beneficial to perform computational screening to assist in the ultimate experimental measurements.
View Article and Find Full Text PDFDimensionality reduction often serves as the first step toward a minimalist understanding of physical systems as well as the accelerated simulations of them. In particular, neural network-based nonlinear dimensionality reduction methods, such as autoencoders, have shown promising outcomes in uncovering collective variables (CVs). However, the physical meaning of these CVs remains largely elusive.
View Article and Find Full Text PDFDespite surging interest in molten salt reactors and thermal storage systems, knowledge of the physicochemical properties of molten salts are still inadequate due to demanding experiments that require high temperature, impurity control, and corrosion mitigation. Therefore, the ability to predict these properties for molten salts from first-principles computations is urgently needed. Herein, we developed and compared a machine-learned neural network force field (NNFF) and a reparametrized rigid ion model (RIM) for a prototypical molten salt LiF-NaF-KF (FLiNaK).
View Article and Find Full Text PDFVisual inspection is an important task in manufacturing industries in order to evaluate the completeness and quality of manufactured products. An autonomous robot-guided inspection system was recently developed based on an offline programming (OLP) and RGB-D model system. This system allows a non-expert automatic optical inspection (AOI) engineer to easily perform inspections using scanned data.
View Article and Find Full Text PDFJ Environ Radioact
December 2020
Dose assessments were required for the epidemiological study of residents living near nuclear power plants. In the present work, environmental pathway models have been applied to estimate radiation doses to residents living near the nuclear power plants in Taiwan. Best estimates of doses were made for residents by their age groups in different compass sectors centered at the nuclear power plants.
View Article and Find Full Text PDFIn this work TLD-200 (CaF:Dy) chips were used to measure the gamma-ray doses in a PMMA phantom exposed to the BNCT beam at Tsing Hua Open-pool Reactor (THOR). The self-irradiation component induced by the decay of Dy-165 was corrected. The neutron dose contamination was less than 0.
View Article and Find Full Text PDFIn this study, a novel strain gauge arrangement and error reduction techniques were proposed to minimize crosstalk reading and simultaneously increase sensitivity on a decoupled six-axis force-moment (F/M) sensor. The calibration process that comprises the least squares method and error reduction techniques was implemented to obtain a robust decoupling matrix. A decoupling matrix is very crucial for minimizing error and crosstalk.
View Article and Find Full Text PDFAutomatic optical inspection (AOI) is a control process for precisely evaluating the completeness and quality of manufactured products with the help of visual information. Automatic optical inspection systems include cameras, light sources, and objects; AOI requires expert operators and time-consuming setup processes. In this study, a novel autonomous industrial robot-guided inspection system was hypothesized and developed to expedite and ease inspection process development.
View Article and Find Full Text PDF