This work deals with the synthesis of SnO-modified sugarcane bagasse biochar (SnO-SBB) nanocomposites using an impregnation method. XRD, FTIR, SEM, and EDX analyses were used to characterize the produced nanocomposites. Several factors influencing the removal of malachite green from wastewater the adsorption process were explored to maximize the effectiveness of this process.
View Article and Find Full Text PDFThe effects of an electron shuttle (dissolved black carbon (DBC) derived from biochar) on the microbial reduction of ferrihydrite and subsequent imidacloprid (IMI) degradation were studied. The results showed that DBC addition enhanced the microbial reduction of Fe(III) in ferrihydrite and increased the quantity of Fe(II) released into the liquid phase. The electron transfer capacity of DBC was significantly influenced by the content of redox-active oxygen-containing functional groups (e.
View Article and Find Full Text PDFPurpose: To develop a method for labeling human bone marrow mesenchymal stem cells (hMSCs) with 89Zr-oxine to characterize the biodistribution characteristics of hMSCs in normal Sprague-Dawley (SD) rats in real-time by micro-PET-computed tomography (micro-PET/CT) imaging.
Methods: 89Zr-oxine complex was synthesized from 89Zr-oxalate and 8-hydroxyquinoline (oxine). After hMSCs were labeled with the 89Zr-oxine complex, the radioactivity retention, viability, proliferation, apoptosis, differentiation, morphology, and phenotype of labeled cells were assessed.
Hydride-based solid-state electrolytes (SSEs) can maintain their stability against Li metal and exhibit high compatibility with a Li metal anode owing to their reducing property and flexible character. However, poor ionic conductivity at room temperature is a major challenge for hydride materials used as SSEs in a lithium ion battery. In this work, a room-temperature fast lithium-ion conductor is explored in response to double anion substitution, (100-x)(3LiBH -LiI)-xP S (LLPx, 0 ≤ x ≤ 50).
View Article and Find Full Text PDFThe fungal community and soil geochemical, physical and biological parameters were analyzed, respectively, in bauxite residues (BRs) treated with organic matter and vermiculite/fly ash by phylogenetic analysis of ITS-18 S rRNA, community level physiological profiles (CLPP) and so on. The results indicated that after amendment of the BR, microbial utilization of carbohydrates and their enzyme activities were significantly increased, but fungal compositions at the phylum level were similar and dominated by the phylum of Ascomycota (82.05-98.
View Article and Find Full Text PDFThe large-scale development of animal husbandry and the wide agricultural application of livestock manure lead to more and more serious co-pollution of heavy metals and antibiotics in soil. In this study, two common feed additives, copper (Cu) and sulfadiazine (SDZ), were selected as target pollutants to evaluate the toxicity and interaction of antibiotics and heavy metals on ammonia oxidizers diversity, potential nitrification rate (PNR), and enzymatic activity in black soils. The results showed that soil enzyme activity was significantly inhibited by single Cu pollution, but the toxicity could be reduced by introducing low-concentration SDZ (5 mg · kg), which showed an antagonistic effect between Cu and SDZ (5 mg · kg), while the combined toxicity of high-concentration SDZ (10 mg · kg) and Cu were strengthened compared with the single Cu contamination on soil enzymes.
View Article and Find Full Text PDFDissolved organic matter (DOM) strongly influences the photodegradation of organic pollutants, varying depending on the structure of DOM. With the wide application of biochar, increasing amounts of DOM is released from biochar to the environment, which has different structural characteristics compared to natural DOM. In this study, DOM was derived from maize straw (MS) and pig manure (PM) and biochars by pyrolyzing MS and PM at 300 °C and 500 °C and the optical characteristics of DOM before and after phototransformation were explored via ultraviolet-visible spectroscopy and excitation-emission matrix fluorescence.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2019
It aimed to investigate and evaluate the soil amelioration process of bauxite residues with the amendments of organic materials from different sources. Wheat straw, poultry manure compost, and biosolids were chosen as the added organic materials. A series of essential soil properties were analyzed to evaluate the effects of organic materials on the soil amelioration of bauxite residue.
View Article and Find Full Text PDF