Publications by authors named "Shao Yao"

Targeted covalent inhibitors (TCIs) play an essential role in the fields of kinase research and drug discovery. Most existing TCIs are however cysteine- or lysine-reactive, thus severely limiting their potential applications. New types of TCIs capable of covalently targeting other nucleophilic amino acids that are readily available in proteins are urgently needed.

View Article and Find Full Text PDF

GaO Schottky photodiodes are being actively explored for solar-blind ultraviolet (SBUV) detection, owing to the fast photoresponse and easy fabrication. However, their performance, limited by the Schottky contact, mostly underperforms the expectations. Herein, a Ni/β-GaO vertical Schottky barrier diode (SBD) with an ultrathin anode electrode is demonstrated.

View Article and Find Full Text PDF

Molecular glues are promising protein-degrading agents that hold great therapeutic potential but face significant challenges in rational design, effective synthesis, and precise targeting of tumor sites. In this study, we first overcame some of these limitations by introducing a fumarate-based molecular glue handle onto specific ligands of therapeutic kinases (TBK1, FGFR, and Bcr-Abl), resulting in the effective degradation of these important cancer targets. Despite the broad applicability of the strategy, we unexpectedly discovered potent and widespread cytotoxicity across various cell lines, including noncancerous ones, rendering it less effective in cancer therapy.

View Article and Find Full Text PDF

Background: Chronic Myeloid Leukemia (CML) is a blood cancer that remains challenging to cure due to drug resistance and side effects from current BCR-ABL inhibitors. There is an urgent need for novel and more effective BCR-ABL targeting inhibitors and therapeutic strategies to combat this deadly disease.

Method: We disclose an "OH-implant" strategy to improve a noncovalent BCR-ABL inhibitor, PPY-A, by adding a hydroxyl group to its scaffold.

View Article and Find Full Text PDF

Reversible lysine acetylation is an important post-translational modification (PTM). This process in cells is typically carried out enzymatically by lysine acetyltransferases and deacetylases. The catalytic lysine in the human kinome is highly conserved and ligandable.

View Article and Find Full Text PDF

Chemoselective modification of specific residues within a given protein poses a significant challenge, as the microenvironment of amino acid residues in proteins is variable. Developing a universal molecular platform with tunable chemical warheads can provide powerful tools for precisely labeling specific amino acids in proteins. Cysteine and lysine are hot targets for chemoselective modification, but current cysteine/lysine-selective warheads face challenges due to cross-reactivity and unstable reaction products.

View Article and Find Full Text PDF

Prodrugs have been explored as an alternative to conventional chemotherapy; however, their target specificity remains limited. The tumor microenvironment harbors a range of microorganisms that potentially serve as tumor-targeting vectors for delivering prodrugs. In this study, we harness bacteria-cancer interactions native to the tumor microbiome to achieve high target specificity for prodrug delivery.

View Article and Find Full Text PDF

Remarkable progress has been made in the development of cysteine-targeted covalent inhibitors. In kinase drug discovery, covalent inhibitors capable of targeting other nucleophilic residues (i.e.

View Article and Find Full Text PDF

Cell-surface proteins are important drug targets but historically have posed big challenges for the complete elimination of their functions. Herein, we report antibody-peptide conjugates (Ab-CMAs) in which a peptide targeting chaperone-mediated autophagy (CMA) was conjugated with commercially available monoclonal antibodies for specific cell-surface protein degradation by taking advantage of lysosomal degradation pathways. Unique features of Ab-CMAs, including cell-surface receptor- and E3 ligase-independent degradation, feasibility towards different cell-surface proteins (e.

View Article and Find Full Text PDF

Advances in targeted covalent inhibitors (TCIs) have been made by using lysine-reactive chemistries. Few aminophiles possessing balanced reactivity/stability for the development of cell-active TCIs are however available. We report herein lysine-reactive activity-based probes (ABPs; 2-14) based on the chemistry of aryl fluorosulfates (ArOSO F) capable of global reactivity profiling of the catalytic lysine in human kinome from mammalian cells.

View Article and Find Full Text PDF
Article Synopsis
  • * The hostile TME includes problems like low oxygen, acidity, and immunosuppressive factors, which negatively impact the function of immune cells that target tumors.
  • * New advances in tumor metabolism-targeting nanomedicines are showing promise in improving immune responses by modifying various metabolic processes in tumors, and the article reviews this progress along with potential future challenges.
View Article and Find Full Text PDF

Targeted degradation of the cell-surface and extracellular proteins via the endogenous lysosomal degradation pathways, such as lysosome-targeting chimeras (LYTACs), has recently emerged as an attractive tool to expand the scope of extracellular chemical biology. Herein, we report a series of recombinant proteins genetically fused to insulin-like growth factor 2 (IGF2), which we termed iLYTACs, that can be conveniently obtained in high yield by standard cloning and bacterial expression in a matter of days. We showed that both type-I iLYTACs, in which IGF2 was fused to a suitable affibody or nanobody capable of binding to a specific protein target, and type-II iLYTAC (or IGF2-Z), in which IGF2 was fused to the IgG-binding Z domain that served as a universal antibody-binding adaptor, could be used for effective lysosomal targeting and degradation of various extracellular and membrane-bound proteins-of-interest.

View Article and Find Full Text PDF

Herein, we report a salicylaldehyde-based, reversible covalent inhibitor (A2) that possesses moderate cellular activity against AURKA with a prolonged residence time and shows significant non-covalent inhibition towards LRRK2. Our results indicated that this multitarget kinase inhibitor may be used as the starting point for future development of more potent, selective and dual-targeting covalent kinase inhibitors against AURKA and LRRK2 for mitophagy.

View Article and Find Full Text PDF

EGFR signaling is involved in multiple cellular processes including cell proliferation, differentiation and development, making this protein kinase one of the most valuable drug targets for the treatment of non-small cell lung carcinomas (NSCLC). Herein, we describe the design and synthesis of a series of potential covalent inhibitors targeting the catalytically conserved lysine (K745) of EGFR on the basis of Erlotinib, an FDA-approved first-generation EGFR drug. Different amine-reactive electrophiles were introduced at positions on the Erlotinib scaffold proximal to K745 in EGFR.

View Article and Find Full Text PDF

The human endocannabinoid system regulates a myriad of physiological processes through a complex lipid signaling network involving cannabinoids and their respective receptors, cannabinoid receptor 1 (hCB R) and cannabinoid receptor 2 (hCB R). Anandamide (AEA) and cannabidiol (CBD) are classical examples of cannabinoids that elicit a variety of effects, both beneficial and detrimental, through these receptors. Mounting evidence suggested the presence of other potential cannabinoid targets that may be responsible for other observable effects.

View Article and Find Full Text PDF

The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.

View Article and Find Full Text PDF

Inducing cell ferroptosis by inactivating glutathione peroxidase 4 (GPX4) is a popular cancer treatment strategy. However, only few GPX4 inhibitors have been developed to date. PROteolysis Targeting Chimera (PROTAC) is a promising approach to provide new opportunities to overcome limitations of traditional therapeutics.

View Article and Find Full Text PDF

Drugs and bioactive natural products exert their pharmacological effects by engaging numerous cellular targets in our body. Identification of these protein targets is essential for understanding the mechanism-of-action of these compounds, thus contributing to improved drug design in drug discovery programs. Termed "in situ drug profiling", a common strategy for studying these bioactive compounds centralized on the covalent capture of protein targets along with a reporter tag to facilitate downstream proteomic analyses.

View Article and Find Full Text PDF

Multiplex detection of protein post-translational modifications (PTMs), especially at point-of-care, is of great significance in cancer diagnosis. Herein, we report a machine learning-assisted photonic crystal hydrogel (PCH) sensor for multiplex detection of PTMs. With closely-related PCH sensors microfabricated on a single chip, our design achieved not only rapid screening of PTMs at specific protein sites by using only naked eyes/cellphone, but also the feasibility of real-time monitoring of phosphorylation reactions.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) plays an essential role in maintaining normal cellular activities. Its heteroplasmic mutations are known to cause various genetic diseases. Current genetic engineering strategies, such as those based on RNA interference (RNAi) and antisense technology, are difficult to genetically alter mtDNA, however, due to the inability of highly negatively charged oligonucleotides to translocate across the double-membrane mitochondria.

View Article and Find Full Text PDF

Lysine-targeting irreversible covalent inhibitors have attracted growing interests in recent years, especially in the fields of kinase research. Despite encouraging progress, few chemistries are available to develop inhibitors that are exclusively lysine-targeting, selective, and cell-active. We report herein a 2-ethynylbenzaldehyde (EBA)-based, lysine-targeting strategy to generate potent and selective small-molecule inhibitors of ABL kinase by selectively targeting the conserved catalytic lysine in the enzyme.

View Article and Find Full Text PDF

Super-resolution imaging provides a powerful approach to image dynamic biomolecule events at nanoscale resolution. An ingenious method involving tuning intramolecular spirocyclization in rhodamine offers an appealing strategy to design cell-permeable fluorogenic probes for super-resolution imaging. Nevertheless, precise control of rhodamine spirocyclization presents a significant challenge.

View Article and Find Full Text PDF

Cell nucleus is the desired subcellular organelle of many therapeutic drugs. Although numerous nanomaterial-based methods have been developed which could facilitate nuclear-targeted delivery of small-molecule drugs, few are known to be capable of delivering exogenous native proteins. Herein, we report a convenient and highly robust approach for effective nuclear-targeted delivery of native proteins/antibodies by using biodegradable silica nanocapsules (BSNPs) that were surface-modified with different nuclear localization signals (NLS) peptides.

View Article and Find Full Text PDF

Although lipids are not genetically encoded, they are fundamental building blocks of cell membranes and essential components of cell metabolites. Lipids regulate various biological processes, including energy storage, membrane trafficking, signal transduction, and protein secretion; therefore, their metabolic imbalances cause many diseases. Approximately 47 000 lipid species with diverse structures have been identified, but little is known about their crucial roles in cellular systems.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores the use of electro-optical tuning metasurfaces, specifically combining lithium niobate (LiNbO) with liquid crystals (LCs), to achieve dynamic reconfiguration and enhanced light manipulation.
  • - It proposes cylinder arrays that can sustain quasi-bound states in the continuum (quasi-BICs), which improve photon longevity and enhance local field strengths, boosting the electro-optic modulation effectiveness.
  • - The innovative integration allows for fine-tuning of transmitted light wavelengths with high sensitivity (up to Δ/Δ ≈ 0.6 nm/V), reducing the need for high voltage and paving the way for applications in tunable displays, LiDAR, and spatial light modulators.
View Article and Find Full Text PDF