Publications by authors named "Shao Hong-Bo"

In recent years, a variety of double protein dairy products have appeared on the market. It is a dairy product made by replacing parts of animal protein with plant protein and then using certain production methods. For some countries with limited milk resources, insufficient protein intake and low income, double protein dairy products have a bright future.

View Article and Find Full Text PDF

Plant WRKY transcription factors (TFs) are active guardians against pathogens' insurgency, key components in developmental processes, contributors in signal transduction pathways, and regulators of diverse biotic and abiotic stress responses. In this research, we isolated, cloned, and functionally characterized a new WRKY TF GmWRKY49 from soybean. GmWRKY49 is a nuclear protein which contains two highly conserved WRKY domains and a CH-type zinc-finger structure.

View Article and Find Full Text PDF

In different plant species, aquaporins (AQPs) facilitate water movement by regulating root hydraulic conductivity under diverse stress conditions such as salt and water stresses. To improve survival and yield of crop plants, a detailed understanding of stress responses is imperative and required. We used Glycine soja genome as a tool to study AQPs, considering it shows abundant genetic diversity and higher salt environment tolerance features and identified 62 Gs AQP genes.

View Article and Find Full Text PDF

Photosynthesis limitation by CO2 flow constraints from sub-stomatal cavities to carboxylation sites in chloroplasts under drought stress conditions is, at least in some plant species or crops not fully understood, yet. Leaf mesophyll conductance for CO2 (gm) may considerably affect both photosynthesis and water use efficiency (WUE) in plants under drought conditions. The aim of our study was to detect the responses of gm in leaves of four winter wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Coastal mudflat areas are regarded as the important reserve land resource in China. Rational exploitation and development of the mudflat areas can relieve the stress of inadequate land resources. Probing into the developing models of resource exploitation of coastal tidal mudflats is one of the important components of achieving the sustainable development in the coastal areas.

View Article and Find Full Text PDF

Background: Published literatures report controversial results about the effect of combined treatment with alendronate and alfacalcidol for the prevention of fractures in osteoporosis patients.

Methods: Seven common databases were searched for related randomized controlled trials published up to April, 2015. Bayesian random effects network meta-analysis was used to assess the pairwise odds ratios (OR), 95% credible intervals (CI).

View Article and Find Full Text PDF

Proline accumulation is a common response to salt stress in many plants. Salt stress also increased proline concentration in roots, stems, and leaves of Kosteletzkya virginica seedling treated with 300 mM NaCl for 24 h and reached 3.75-, 4.

View Article and Find Full Text PDF

Recently, the frequent seasonal drought in Southwest China has brought considerable concerns and continuous heated arguments on the "water pump" viewpoint (i.e., the water demand from Hevea spp.

View Article and Find Full Text PDF

In conditions of long-lasting moderate drought stress, we have studied the photoprotective responses in leaves of wheat (Triticum aestivum L., cv. Katya) related to the photosynthetic electron and proton transport.

View Article and Find Full Text PDF

Soil salinity and groundwater depth are the two important factors affecting the vegetation growth and distribution in the Yellow River Delta. Through field investigation and statistical analysis, this paper studied the relationships between the typical vegetations (Suaeda heteroptera-Tamarix chinensis, Robinia pseudoacacia, Phragmites australis, and cotton) , soil salinity, and groundwater depth in the Delta. In the study area, groundwater depth had significant effects on soil salinity, with the average influence coefficient being 0.

View Article and Find Full Text PDF

Objective: To observe the clinical effect of the concentrated suture fixation method on skin transplantation on deep burn wound or wound of cicatricial deformity after burn in the jaw and neck region.

Methods: One hundred and fourteen patients, hospitalized from April 2002 to December 2011, with deep burn or cicatricial deformity after burn in the jaw and neck region, were divided into packaging group and concentrated suture group according to the random number table. Each group had 57 patients including 48 cases with deep burn and 9 cases with cicatricial deformity.

View Article and Find Full Text PDF

Objective: To study the influence of high-voltage electric burn on the microcirculation of heart in rabbit.

Methods: One-hundred and twenty New Zealand rabbits of clean grade were divided into control group (C) and electric burn group (EB) according to the random number table, with 60 rabbits in each group. Rabbits in EB group were subjected to high-voltage electric burn (the electrical current flow into the left foreleg at the lateral side of proximal end and out from the corresponding site of the right hind leg) with voltage regulator and experimental transformer.

View Article and Find Full Text PDF

Global warming is one of the most serious challenges facing us today. It may be linked to the increase in atmospheric CO2 and other greenhouse gases (GHGs), leading to a rise in sea level, notable shifts in ecosystems, and in the frequency and intensity of wild fires. There is a strong interest in stabilizing the atmospheric concentration of CO2 and other GHGs by decreasing carbon emission and/or increasing carbon sequestration.

View Article and Find Full Text PDF

Background: Seven serine/threonine kinase genes have been predicted in unicellular cyanobacterium Synechocystis sp. PCC6803. SpkA and SpkB were shown to be required for cell motility and SpkE has no kinase activity.

View Article and Find Full Text PDF

A transgenic barley line (LSY-11-1-1) with overexpressed Phalaris coerulescens thioredoxin gene (PTrx) was employed to measure the growth, protein oxidation, cell viability, and antioxidase activity in barley roots during germination on the presence of 2 mmol/L AlCl(3) on filter paper. The results show that (1) compared with the non-transgenic barley, LSY-11-1-1 had enhanced root growth, although both were seriously inhibited after AlCl(3) treatment; (2) the degree of protein oxidation and loss of cell viability in roots of LSY-11-1-1 were much less than those in roots of non-transgenic barley, as reflected by lower contents of protein carbonyl and Evans blue uptakes in LSY-11-1-1; (3) activities of catalase (CAT), glutathione peroxidase (GPX), ascorbate peroxidase (APX), and glutathione reductase (GR) in LSY-11-1-1 root tips were generally higher than those in non-transgenic barley root tips, although these antioxidase activities gave a rise to different degrees in both LSY-11-1-1 and non-transgenic barley under aluminum stress. These results indicate that overexpressing PTrx could efficiently protect barley roots from oxidative injury by increasing antioxidase activity, thereby quenching ROS caused by AlCl(3) during germination.

View Article and Find Full Text PDF

In the past 20 years, the major effort in plant breeding has changed from quantitative to molecular genetics with emphasis on quantitative trait loci (QTL) identification and marker assisted selection (MAS). However, results have been modest. This has been due to several factors including absence of tight linkage QTL, non-availability of mapping populations, and substantial time needed to develop such populations.

View Article and Find Full Text PDF

Higher plants not only provide human beings renewable food, building materials and energy, but also play the most important role in keeping a stable environment on earth. Plants differ from animals in many aspects, but the important is that plants are more easily influenced by environment than animals. Plants have a series of fine mechanisms for responding to environmental changes, which has been established during their long-period evolution and artificial domestication.

View Article and Find Full Text PDF

The objective of this study was to locate chromosomes for improving water and phosphorus-deficiency tolerance of wheat at the seedling stage. A set of Chinese Spring-Egyptian Red wheat substitution lines and their parent Chinese Spring (recipient) and Egyptian Red (donor) cultivars were measured to determine the chromosomal locations of genes controlling water use efficiency (WUE) and phosphorus use efficiency (PUE) under different water and phosphorus conditions. The results underlined that chromosomes 1A, 7A, 7B, and 3A showed higher leaf water use efficiency (WUE(l) = Pn/Tr; Pn = photosynthetic rate; Tr = transpiration rate) under W-P (Hoagland solution with 1/2P), -W-P (Hoagland solution with 1/2P and 10% PEG).

View Article and Find Full Text PDF

Heavy metal pollution of soil is a significant environmental problem with a negative potential impact on human health and agriculture. Rhizosphere, as an important interface of soil and plants, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria or mycorrhizas have received more and more attention.

View Article and Find Full Text PDF

Hazardous heavy metal pollution of soils is an increasingly urgent problem all over the world. The zeolite as a natural amendment has been studied extensively for the remediation of hazardous heavy metal-polluted soils with recycling. But its theory and application dose are not fully clear.

View Article and Find Full Text PDF