Gray mold caused by is a devastating disease that leads to huge economic losses worldwide. Autophagy is an evolutionarily conserved process that maintains intracellular homeostasis through self-eating. In this study, we identified and characterized the biological function of the autophagy-related protein Atg6 in .
View Article and Find Full Text PDFMitochondrial DNA B Resour
February 2021
Six circular mitochondrial genomes of multi-, bi-, and uninucleate isolates were assembled and found that all the genomes contain 14 conserved protein-coding genes, one ribosomal protein (rps3), and 23 tRNA in the same order. The mitogenome sizes of uninucleate isolates were relatively smaller than binucleate and multinucleate stains. The size variations between uninucleate and multinucleate isolates were from both intergenic and intronic regions, whereas the differences between uninucleate and binucleate isolates were predominantly from intergenic regions.
View Article and Find Full Text PDFThe basidiomycetous fungal genus, Rhizoctonia, can cause severe damage to many plants and is composed of multinucleate, binucleate, and uninucleate species differing in pathogenicity. Here we generated chromosome-scale genome assemblies of the three nuclear types of Rhizoctonia isolates. The genomic comparisons revealed that the uninucleate JN strain likely arose by somatic hybridization of two binucleate isolates, and maintained a diploid nucleus.
View Article and Find Full Text PDFApple Marssonina leaf blotch (AMLB; ) is a severe disease of apple that mainly causes premature leaf defoliation in many apple growing areas worldwide. AMLB epidemic development is closely related to temperature and rainfall. In this study, the effects of temperature and moisture on conidium germination, infection on leaves, and acervulus production were investigated under controlled environments.
View Article and Find Full Text PDFMol Plant Microbe Interact
June 2020
Several fungal pathogens cause grape white rot disease and is a predominant pathogen in Chinese vineyards. The disease occurs on leaves, vines, and fruit berries, leading to considerable yield losses and even to total destruction of vineyards. Here, we present the first Pacbio and Illumina-sequenced draft genome assembly of QNYT13637 and its annotation.
View Article and Find Full Text PDFFusarium graminearum is a destructive fungal pathogen and a major cause of Fusarium head blight (FHB) which results in severe grain yield losses and quality reduction. Additionally, the pathogen produces mycotoxins during plant infection, which are harmful to the health of humans and livestock. As it is well known that lysine acetyltransferase complexes play important roles in pathogenesis, the roles of the Eaf6 homolog-containing complex have not been reported in fungal pathogen.
View Article and Find Full Text PDFBackground: Fusarium graminearum is a destructive fungal pathogen of wheat, barley and other small grain cereals. During plant infection, the pathogen produces trichothecene mycotoxin deoxynivalenol (DON), which is harmful to human and livestock. FgGCN5 encodes a GCN5 acetyltransferase.
View Article and Find Full Text PDFThe fungal pathogen Botrytis cinerea causes gray mold disease on various hosts, which results in serious economic losses. Over the past several decades, many kinds of fungicides have been used to successfully control the disease. Meanwhile, the uses of fungicides lead to environmental pollution as well as a potential threat to the human health by the chemical residues in tomato fruit.
View Article and Find Full Text PDFBackground: Lysine acetylation in proteins is a ubiquitous and conserved post-translational modification, playing a critical regulatory role in almost every aspect of living cells. Although known for many years, its function remains elusive in Fusarium graminearum, one of the most important necrotrophic plant pathogens with huge economic impact.
Results: By the combination of affinity enrichment and high-resolution LC-MS/MS analysis, large-scale lysine acetylome analysis was performed.
Microtubules are essential for various cellular activities and β-tubulins are the target of benzimidazole fungicides. However, the evolution and molecular mechanisms driving functional diversification in fungal tubulins are not clear. In this study, we systematically identified tubulin genes from 59 representative fungi across the fungal kingdom.
View Article and Find Full Text PDFWall-associated protein kinases (WAKs) are a new group of receptor-like kinases (RLK) recently identified in Arabidopsis. A cDNA encoding a novel WAK was isolated from rice and was named OsWAK1 (Oryza sativa WAK). The deduced amino acid sequence of OsWAK1 showed 27.
View Article and Find Full Text PDFgamma-Aminobutyrate transaminase (GABA-T) catalyzes the conversion of GABA to succinic semialdehyde. Using differential display PCR and cDNA library screening, a full-length GABA-T cDNA (OsGABA-T) was isolated from rice (Oryza sativa) leaves infected with an incompatible race of Magnaporthe grisea. The deduced amino acid sequence comprises 483 amino acid residues and shares 85-69% identity with GABA-T sequences from other plants.
View Article and Find Full Text PDF