Publications by authors named "Shanyi Du"

Composite materials are widely used in aircraft due to the urgent need for high-quality structures in aerospace engineering. In order to verify the effectiveness of complex bolt repairs on composite structures, compression tests have been performed on three types (intact, damaged, and repaired) of composite plate specimens, and finite element simulation results of these three types' specimens were obtained. The experimental results show that for damaged composite laminates, the strength recovery after bolt repair can reach an impressive 107%, and the delamination propagation caused by over-buckling deformation is considered to be the main cause of failure, which also suggests that although bolt repair can improve the strength of the specimens, it has a limited ability to inhibit delamination propagation.

View Article and Find Full Text PDF

Sugars are renewable resources essential to human life, but they are rarely used as raw materials for the industrial production of carbon-based materials, especially for the preparation of carbon fiber-reinforced carbon-matrix (C/C) composites, which are extremely useful for the semiconductor and aerospace sectors. Herein, a method utilizing sugar-derived carbon to replace petrochemicals as dense matrix to preparing C/C composites is reported. The matrix from sugar-derived C/C (S-C/C) composites has a nanocrystalline graphite structure that is highly thermally stable and effectively bonded to the carbon fibers.

View Article and Find Full Text PDF

The triple-shape memory polymer (TSMP) can be programmed into two temporary shapes (S and S) and shows an ordinal recovery from S to S and eventually to the permanent shape upon heating, which realizes more complex stimulus-response motions. We introduced a novel strategy for forming triple-shape memory cyanate ester (TSMCE) resins with high strength and fracture toughness via three-step curing, including four-dimensional (4D) printing, UV post-curing, and thermal curing. The obtained TSMCE resins presented two separated glass transition temperature () regions due to the formation of an interpenetrating polymer network (IPN), which successfully endowed the polymers with the triple-shape memory effect.

View Article and Find Full Text PDF
Article Synopsis
  • Large plastic deformation in polycrystalline van der Waals (vdW) materials, like graphite, is tough due to their anisotropic nature.
  • The introduction of sugar-derived isotropic nanostructured polycrystalline graphite (SINPG) allows for better plasticity through the rotation of small nanoscale grains.
  • SINPG exhibits impressive compressive strengths up to 3.0 GPa and plastic strains of 30-50%, indicating potential applications in various fields, including semiconductors and aerospace.
View Article and Find Full Text PDF

ZrWO/ZrO composites with tunable low/near-zero coefficients of thermal expansion (CTE) are promising candidates in several fields including aerospace, precision manufacturing and measurement, electronic circuit, etc., for counteracting the thermal expansion effect. However, bottleneck issues (such as the unstable decomposition of ZrWO phase, manufacturing size limitation, etc.

View Article and Find Full Text PDF

High-performance shape memory thermosetting polymers and their composites for four-dimensional (4D) printing are essential in practical applications. To date, most printable thermosets suffer from complicated processes, poor thermodynamic performances, and low printing speed. Here, photosensitive composite inks for fast photocuring printing are developed.

View Article and Find Full Text PDF

Multiple stretchability has never been demonstrated as supercapacitors because the hydrogel used cannot fully recover after being heavily deformed. Now, a highly reversibly stretchable all-polymer supercapacitor was fabricated using a developed double network hydrogel (DN hydrogel) as electrolyte and pure polypyrrole (PPy) as electrode. The DN hydrogel provides excellent mechanical properties, which can be stretched up to 500 % many times and then restore almost 100 % of the original length.

View Article and Find Full Text PDF

Flexible energy storage devices have attracted wide attention because of the increasing requirement of wearable electronics. However, comfortability, productivity, and feasibility, to name a few, are still far from satisfactory in the current wearable supercapacitors (SCs). This is largely due to the missing of an ideal low-cost flexible substrate/current collector that should not only exhibit high conductivity, but also be compatible with modern textile technologies.

View Article and Find Full Text PDF

To solve the drawbacks of poor dispersion and weak interface in gas barrier nanocomposites, a novel epoxy-diamine adduct (DDA) was synthesized by reacting epoxy monomer DGEBA with curing agent D400 to functionalize montmorillonite (MMT), which could provide complete compatibility and reactivity with a DGEBA/D400 epoxy matrix. Thereafter, sodium type montmorillonite (Na-MMT) and organic-MMTs functionalized by DDA and polyether amines were incorporated with epoxy to manufacture nanocomposites. The effects of MMT functionalization on the morphology and gas barrier property of nanocomposites were evaluated.

View Article and Find Full Text PDF

Carbon fiber (CF) reinforced carbon-silicon carbide (C/C-SiC) composites are one of the most promising lightweight materials for re-entry thermal protection, rocket nozzles and brake discs applications. In this paper, a novel sandwich-structured C/C-SiC composite, containing two exterior C/SiC layers, two gradient C/C-SiC layers and a C/C core, has been designed and fabricated by two-step electromagnetic-coupling chemical vapor infiltration (E-CVI) for a 20-hour deposition time. The cross-section morphologies, interface microstructures and SiC-matrix growth characteristics and compositions of the composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively.

View Article and Find Full Text PDF

Graphene nanoribbon aerogels are fabricated by directly unzipping multi-walled carbon nanotube sponges. These fascinating materials have potential applications as high performance nanocomposites and supercapacitor electrodes.

View Article and Find Full Text PDF

Introducing twists into carbon nanotube yarns could produce hierarchical architectures and extend their application areas. Here, we utilized such twists to produce elastic strain sensors over large strain (up to 500%) and rotation actuators with high energy density. We show that a helical nanotube yarn can be overtwisted into highly entangled, macroscopically random but locally organized structures, consisting of mostly double-helix segments intertwined together.

View Article and Find Full Text PDF

The strength and flexibility of carbon nanotubes (CNTs) allow them to be constructed into a variety of innovated architectures with fascinating properties. Here, we show that CNTs can be made into a highly twisted yarn-derived double-helix structure by a conventional twist-spinning process. The double-helix is a stable and hierarchical configuration consisting of two single-helical yarn segments, with controlled pitch and unique mechanical properties.

View Article and Find Full Text PDF

The adsorption of antimony acetate (Sb(OAc)(3)) on sodium montmorillonite (Na-MMT) was studied at five different initial concentrations, and data from the adsorption isotherm were modeled using the Langmuir, Freundlich and D-R isotherm equations. The kinetics of adsorption was also discussed using three kinetic models: the pseudo-first-order, the pseudo-second-order and the intraparticle diffusion model. The rate constants of pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetics, and the amount of Sb(OAc)(3) adsorbed at equilibrium were determined.

View Article and Find Full Text PDF

The vibrational density of states and nonresonant reduced Raman spectra of amorphous carbon at densities of 2.6, 2.9 and 3.

View Article and Find Full Text PDF