Background: Medulloblastoma (MB) patients with MYC oncogene amplification or overexpression exhibit extremely poor prognoses and therapy resistance. However, MYC itself has been one of the most challenging targets for cancer treatment. Here, we identify a novel marinopyrrole natural derivative, MP1, that shows desirable anti-MYC and anti-cancer activities in MB.
View Article and Find Full Text PDFMYC amplification or overexpression is most common in Group 3 medulloblastomas and is positively associated with poor clinical outcomes. Recently, protein arginine methyltransferase 5 (PRMT5) overexpression has been shown to be associated with tumorigenic MYC functions in cancers, particularly in brain cancers such as glioblastoma and medulloblastoma. PRMT5 regulates oncogenes, including MYC, that are often deregulated in medulloblastomas.
View Article and Find Full Text PDFBackground: Medulloblastoma (MB) patients with MYC oncogene amplification or overexpression exhibit extremely poor clinical outcomes and respond poorly to current therapies. Epigenetic deregulation is very common in MYC-driven MB. The bromodomain extra-terminal (BET) proteins and histone deacetylases (HDACs) are epigenetic regulators of MYC transcription and its associated tumorigenic programs.
View Article and Find Full Text PDFBackground: Neuroblastoma (NB) patients with MYCN amplification or overexpression respond poorly to current therapies and exhibit extremely poor clinical outcomes. PI3K-mTOR signaling-driven deregulation of protein synthesis is very common in NB and various other cancers that promote MYCN stabilization. In addition, both the MYCN and mTOR signaling axes can directly regulate a common translation pathway that leads to increased protein synthesis and cell proliferation.
View Article and Find Full Text PDFThe incidence of pediatric cancers is rising steadily across the world, along with the challenges in understanding the molecular mechanisms and devising effective therapeutic strategies. Pediatric cancers are presented with diverse molecular characteristics and more distinct subtypes when compared to adult cancers. Recent studies on the genomic landscape of pediatric cancers using next-generation sequencing (NGS) approaches have redefined this field by providing better subtype characterization and novel actionable targets.
View Article and Find Full Text PDFIntercellular communication between tumor cells within the hypoxic microenvironment promote aggressiveness and poor patient prognoses for reasons that remain unclear. Here we show that hypoxic Ewing's sarcoma (EWS) cells release exosomes that promote sphere formation, a stem-like phenotype, in EWS cells by enhancing survival. Analysis of the hypoxic exosomal miRNA cargo identified a HIF-1α regulated miRNA, miR-210, as a potential mediator of sphere formation in cells exposed to hypoxic exosomes.
View Article and Find Full Text PDFBackground: Medulloblastoma (MB) is one of the most common malignant cancers in children. MB is primarily classified into four subgroups based on molecular and clinical characteristics as (1) WNT (2) Sonic-hedgehog (SHH) (3) Group 3 (4) Group 4. Molecular characteristics used for MB classification are based on genomic and mRNAs profiles.
View Article and Find Full Text PDFThe MYC oncogene is frequently amplified in patients with medulloblastoma, particularly in group 3 patients, who have the worst prognosis. mTOR signaling-driven deregulated protein synthesis is very common in various cancers, including medulloblastoma, that can promote MYC stabilization. As a transcription factor, MYC itself is further known to regulate transcription of several components of protein synthesis machinery, leading to an enhanced protein synthesis rate and proliferation.
View Article and Find Full Text PDFGene fusions that contribute to oncogenicity can be explored for identifying cancer biomarkers and potential drug targets. To investigate the nature and distribution of fusion transcripts in cancer, we examined the transcriptome data of about 9,000 primary tumors from 33 different cancers in TCGA (The Cancer Genome Atlas) along with cell line data from CCLE (Cancer Cell Line Encyclopedia) using ChimeRScope, a novel fusion detection algorithm. We identified several fusions with sense (canonical, 39%) or antisense (non-canonical, 61%) transcripts recurrent across cancers.
View Article and Find Full Text PDFBackground: MYC amplification or overexpression is common in Group 3 medulloblastoma and is associated with the worst prognosis. Recently, protein arginine methyl transferase (PRMT) 5 expression has been closely associated with aberrant MYC function in various cancers, including brain tumors such as glioblastoma. However, the role of PRMT5 and its association with MYC in medulloblastoma have not been explored.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2019
Medulloblastoma (MB) is a highly aggressive, malignant brain tumor in children with poor prognosis. Cyclin-dependent kinase 9 (CDK9), a serine-threonine kinase, is widely implicated in the control of basal gene expression by phosphorylating Serine 2 (Ser2) of the heptad repeat in the RNA Polymerase II (RNA Pol II) C-terminal domain (CTD). Although CDK9 plays a pathogenic role in various cancers, its function in MB remains unknown.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) represents an aggressive B-cell lymphoma with frequent relapse and poor survival. Recently, dysregulated histone-deacetylases (HDACs) and cell cycle CDK-Rb pathway have been shown to be commonly associated with MCL pathogenesis, and are considered promising targets for relapsed-lymphoma therapy. Therefore, we investigated the single agents and combination efficacy of HDACs inhibitor Vorinostat, CDK4/6 dual-inhibitor Palbociclib on MCL cell growth/survival and underlying molecular mechanism(s) using MCL cell lines including therapy-resistant MCL cell lines.
View Article and Find Full Text PDFAberrant activation and interactions of hedgehog (HH) and PI3K/AKT/mTOR signaling pathways are frequently associated with high-risk medulloblastoma (MB). Thus, combined targeting of the HH and PI3K/AKT/mTOR pathways could be a viable therapeutic strategy to treat high-risk patients. Therefore, we investigated the anti-MB efficacies of combined HH inhibitor Vismodegib and PI3K-mTOR dual-inhibitor BEZ235 together or combined individually with cisplatin against high-risk MB.
View Article and Find Full Text PDFMedulloblastoma (MB) is a malignant pediatric brain tumor with poor prognosis. Signal transducers and activators of transcription-3 (STAT3) is constitutively activated in MB where it functions as an oncoprotein, mediating cancer progression and metastasis. Here, we have delineated the functional role of activated STAT3 in MB, by using a cell permeable STAT3-NH terminal domain inhibitor (S3-NTDi) that specifically perturbs the structure/function of STAT3.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) is a heterogeneous B cell malignancy that still remains incurable. Recent studies have highlighted cellular and non-cellular components of the tissue microenvironment in CLL that help nurture the growth of leukemic cells by providing the necessary stimuli for their proliferation and survival. The diverse stimuli in the specialized tissue microenvironment of CLL lead to constitutive activation of several signaling pathways that includes B cell receptor signaling and the associated mitogen-activated protein kinase (MAPK) signaling.
View Article and Find Full Text PDFBackground: Evaluate the anti-tumor activity of ozonide antimalarials using a chemoresistant neuroblastoma cell line, BE (2)-c.
Methods: The activity of 12 ozonides, artemisinin, and two semisynthetic artemisinins were tested for activity against two neuroblastoma cell-lines (BE (2)-c and IMR-32) and the Ewing's Sarcoma cell line A673 in an MTT viability assay. Time course data indicated that peak effect was seen 18 h after the start of treatment thus 18 h pre-treatment was used for all subsequent experiments.
Molecular pathogenesis of Chronic Lymphocytic Leukemia (CLL) is not fully elucidated. Genome wide association studies have linked Interferon Regulatory Factor 4 (IRF4) to the development of CLL. We recently established a causal relationship between low levels of IRF4 and development of CLL.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) is characterized by a clinically aggressive course with frequent relapse and poor survival. The p53 pathway is frequently dysregulated and p53 status predicts clinical outcome. In this report, we investigated whether modulation of p73 isoforms by diclofenac inhibits cell growth, induces apoptosis and/or cell cycle arrest in MCL relative to p53 status.
View Article and Find Full Text PDFAberrant activation/expression of pathways/molecules including NF-kB, mTOR, hedgehog and polo-like-kinase-1 (PLK1) are correlated with poor-prognosis neuroblastoma. Therefore, to identify a most efficacious treatment for neuroblastoma, we investigated the efficacy of NF-kB/mTOR dual-inhibitor 13-197, hedgehog inhibitor vismodegib and PLK1 inhibitor BI2536 alone or combined with topotecan against high-risk neuroblastoma. The in vitro efficacy of the inhibitors alone or combined with topotecan on cell growth/apoptosis and molecular mechanism(s) were investigated.
View Article and Find Full Text PDFClinical heterogeneity is a major barrier to effective treatment of chronic lymphocytic leukemia (CLL). Emerging evidence suggests that constitutive activation of various signaling pathways like mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-Erk) signaling plays a role in the heterogeneous clinical outcome of CLL patients. In this study, we have investigated the role of Sprouty (SPRY)2 as a negative regulator of receptor and nonreceptor tyrosine kinase signaling in the pathogenesis of CLL.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) is the most common adult leukemia in the United States. The tissue microenvironment, specifically the lymph nodes, influences the biological and clinical behavior of CLL cells. Gene expression profiling of CLL cells from peripheral blood, bone marrow, and lymph nodes revealed Cav-1 as one of the genes that might be involved in the pathogenesis of CLL.
View Article and Find Full Text PDFBackground: Computational methods have been widely used for the prediction of protein subcellular localization. However, these predictions are rarely validated experimentally and as a result remain questionable. Therefore, experimental validation of the predicted localizations is needed to assess the accuracy of predictions so that such methods can be confidently used to annotate the proteins of unknown localization.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) cells survive longer in vivo than in vitro, suggesting that the tissue microenvironment provides prosurvival signals to tumor cells. Primary and secondary lymphoid tissues are involved in the pathogenesis of CLL, and the role of these tissue microenvironments has not been explored completely. To elucidate host-tumor interactions, we performed gene expression profiling (GEP) of purified CLL cells from peripheral blood (PB; n = 20), bone marrow (BM; n = 18), and lymph node (LN; n = 15) and validated key pathway genes by real-time polymerase chain reaction, immunohistochemistry and/or TCL1 trans-genic mice.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) is one of the most aggressive B-cell non-Hodgkin lymphomas with a median survival of approximately five years. Currently, there is no curative therapy available for refractory MCL because of relapse from therapy-resistant tumor cells. The NF-κB and mTOR pathways are constitutively active in refractory MCL leading to increased proliferation and survival.
View Article and Find Full Text PDFEarlier, we reported that CTLA4 expression is inversely correlated with CD38 expression in chronic lymphocytic leukemia (CLL) cells. However, the specific role of CTLA4 in CLL pathogenesis remains unknown. Therefore, to elucidate the possible role of CTLA4 in CLL pathogenesis, CTLA4 was down-regulated in primary CLL cells.
View Article and Find Full Text PDF