Publications by authors named "Shantanu Misra"

Distortion of the density of states induced by specific impurities, a mechanism known as resonant level (RL), is an efficient strategy to enhance the thermoelectric performances of metals and semiconductors. So far, experimental signatures identifying the resonant nature of an impurity have relied on the so-called Ioffe-Pisarenko plot that enables visualizing the induced thermopower enhancement at specific carrier concentrations. However, this method cannot solely discern RL from other possible band-structure-related sources of thermopower enhancement such as band-shape modifications or band convergence.

View Article and Find Full Text PDF

Rutile is the most common and stable polymorph form of titanium oxide TiO2 at all temperatures. The doping of rutile TiO2 with a small amount of niobium is reknown for being responsible for a large increase of the electrical conductivity by several orders of magnitude, broadening its technological interest towards new emerging fields such as the thermoelectric conversion of waste heat. The electronic conduction has been found to be of a polaronic nature with strongly localized charges around the Ti3+ centers while, on the other side, the relatively high value of the thermal conductivity implies the existence of lattice heat carriers, i.

View Article and Find Full Text PDF

Because the binary chalcogenide SnTe is an interesting Pb-free alternative to the state-of-the-art thermoelectric material PbTe, significant efforts were devoted to the optimization of its thermoelectric properties over the last few years. Here, we show that saturation-annealing treatments performed at 823, 873 or 973 K under Sn-rich conditions provide a successful strategy to prepare polycrystalline samples with a controlled concentration of Sn vacancies. Both scanning transmission electron microscopy and Mössbauer spectroscopy demonstrate the absence of Sn-rich areas at the grain boundaries in the saturation-annealed samples.

View Article and Find Full Text PDF