Enteric neurons control gut physiology by regulating peristalsis, nutrient absorption, and secretion . Disruptions in microbial communities caused by antibiotics or enteric infections result in the loss of enteric neurons and long-term motility disorders . However, the signals and underlying mechanisms of this microbiota-neuron communication are unknown.
View Article and Find Full Text PDFDesigning robust, efficient and inexpensive trifunctional electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is significant for rechargeable zinc-air batteries and water-splitting devices. To this end, constructing heterogenous structures based on transition metals stands out as an effective strategy. Herein, a dual-phase CoS-CoMoS heterostructure grown on porous N, S-codoped carbon substrate (CoS-CoMoS/NSC) via a one-pot synthesis is investigated as the trifunctional ORR/OER/HER electrocatalyst.
View Article and Find Full Text PDFDeveloping carbon dioxide (CO) photocatalysts from transition metal carbides (TMCs) with abundant active sites, modulable electron cloud density, as well as low cost and high stability is of great significance for artificial photosynthesis. Building an efficient electron transfer channel between the photo-excitation site and the reaction-active site to extract and steer photo-induced electron flow is necessary but challenging for the highly selective conversion of CO. In this study, we achieved an oxygen-bridged Schottky junction between ZnO and NiZnC (denoted as Zn-O-Zn) through a ligand-vacancy strategy of MOF.
View Article and Find Full Text PDFThe intestine and liver are thought to metabolize dietary nutrients and regulate host nutrient homeostasis. Here, we find that the gut microbiota also reshapes the host amino acid (aa) landscape via efficiently metabolizing intestinal aa. To identify the responsible microbes/genes, we developed a metabolomics-based assay to screen 104 commensals and identified candidates that efficiently utilize aa.
View Article and Find Full Text PDFA strong correlation between gut microbes and host health has been observed in numerous gut metagenomic cohort studies. However, the underlying mechanisms governing host-microbe interactions in the gut remain largely unknown. Here we report that the gut commensal Christensenella minuta modulates host metabolism by generating a previously undescribed class of secondary bile acids with 3-O-acylation substitution that inhibit the intestinal farnesoid X receptor.
View Article and Find Full Text PDFSubphthalocyanines (SubPcs) are a kind of tripyrrolic macrocycle with a boron atom at their core. Incorporating different units onto the SubPc periphery can endow them with various unique properties. Herein, a series of novel fluorinated low-symmetry SubPc derivatives containing chlorine groups (F-Cl-SubPc, F-Cl-SubPc) and methoxy groups (F-(OCH)-SubPc) were synthesized and characterized by spectral methods (MS, FT-IR, H, C, B, and F NMR spectroscopy), and the effect of the peripheral substituents on their electronic structure of low-symmetry macrocycle was investigated by cyclic voltammetry, theoretical calculation, electronic absorption, and emission spectroscopy.
View Article and Find Full Text PDFObesity, dyslipidemia and gut dysbiosis are all linked to cardiovascular diseases. A Ganoderma meroterpene derivative (GMD) has been shown to alleviate obesity and hyperlipidemia through modulating the gut microbiota in obese mice. Here we show that GMD protects against obesity-associated atherosclerosis by increasing the abundance of Parabacteroides merdae in the gut and enhancing branched-chain amino acid (BCAA) catabolism.
View Article and Find Full Text PDFFlexible solid-state zinc-air batteries (ZABs) with low cost, excellent safety, and high energy density has been considered as one of ideal power sources for portable and wearable electronic devices, while their practical applications are still hindered by the kinetically sluggish cathodic oxygen reduction and oxygen evolution reactions (ORR/OER). Herein, a Janus-structured flexible free-standing bifunctional oxygen electrocatalyst, with OER-active O, N co-coordinated Ni single atoms and ORR-active CoO@CoS nanosheet arrays being separately integrated at the inner and outer walls of flexible hollow carbon nanofibers (Ni-SAs/HCNFs/Co-NAs), is reported. Benefiting from the sophisticated topological structure and atomic-level-designed chemical compositions, Ni-SAs/HCNFs/Co-NAs exhibits outstanding bifunctional catalytic activity with the Δ index of 0.
View Article and Find Full Text PDFBackground And Objective: White matter hyperintensities (WMH) are magnetic resonance imaging manifestations of brain white matter lesions, which are common in the elderly. There is a correlation between WMH and cognitive impairment, but its imaging features lack heterogeneity, which makes early diagnosis difficult. Studies have found that cognitive impairment in patients with WMH is closely related to changes in the expression of serum inflammatory markers.
View Article and Find Full Text PDFMore than 300 missense mutations in PSEN1 gene have been correlated to the early-onset Alzheimer's disease (EOAD), but given the high diversity of PS1 (the PSEN1 gene product) substrates and the involvement of PS1 in multiple biological functions, different mutants may represent different EOAD etiologies, and how each mutant contributes to the EOAD remains to be further investigated. Here we report the identification of a novel PSEN1 p.Tyr159Ser in a family with multiple EOAD cases.
View Article and Find Full Text PDFGut fungi is known to play many important roles in human health regulations. Herein, we investigate the anti-obesity efficacy of the antifungal antibiotics (amphotericin B, fluconazole and 5-fluorocytosine) in the high fat diet-fed (HFD) mice. Supplementation of amphotericin B or fluconazole in water can effectively inhibit obesity and its related disorders, whereas 5-fluorocytosine exhibit little effects.
View Article and Find Full Text PDFAcute ischemic stroke has become the major cause of mortality and disability worldwide. Following ischemic stroke, the reperfusion injury is mainly mediated by the burst of reactive oxygen and nitrogen species (RONS). Therefore, blocking the excessive production or removing RONS holds great promise as a potential therapeutic strategy.
View Article and Find Full Text PDFWe used a simple MOFs-assisted synthesis strategy based on the encapsulation and in-situ carburizing reaction of Cu-based metallic organic frameworks (NENU-5) to synthesize porous nano-octahedral materials, MoWN/MoWC@NCTs (T = 700, 800, and 900). Together with the vapor deposition strategy, the volatile nitrogen species from the pyrolysis of dicyandiamide were captured by the nano-octahedral materials, and formed tungsten-molybdenum-based carbonitride nanocrystals encapsulated in nitrogen-doped carbon. The porous nano-octahedron has a unique heterostructure composed of MoN/MoC/WN/WC.
View Article and Find Full Text PDFPrior chronic treatment with statins has been shown to be associated with more favorable outcomes in patients with acute coronary syndrome (ACS). Specific changes in the gut microbiota and microbial metabolites have been shown to influence the progression of coronary artery disease. However, the critical microbial and metabolomic changes associated with the cardiovascular protective effects of statins in ACS remain elusive.
View Article and Find Full Text PDFEthnopharmacological Relevance: Eighteen Incompatible Medicaments (EIM) belongs to the category of incompatibility of Traditional Chinese medicine (TCM). This theory forbids concomitant using any one of the eighteen herbal pairs such as Radix Glycyrrhizae (RG)-Radix Euphorbiae Pekinensis (REP), Radix Aconiti-Bulbus Fritiliariae Cirrhosae, and Radix et Rhizoma Veratri Nigri-Radix Ginseng. Concomitant using RG and REP could result in more serious adverse effects on major organs such as kidney, heart, and liver.
View Article and Find Full Text PDFAims: Neuronal apoptosis acts as the pivotal pathogenesis of cerebral ischemia/reperfusion (I/R) injury after ischemic stroke. PAQR3 (progestin and adipoQ receptor family member 3) is a crucial player who participates in the regulation of cell death. We aim to explore the specific function and the underlying mechanism of PAQR3 in cerebral I/R induced neuronal injury.
View Article and Find Full Text PDFAlcohol abuse and alcoholic liver diseases (ALD) have been worldwide spread. Chronic alcoholism-induced overgrowth of intestinal bacteria and fungi together with the enteric dysbiosis are important pathogenic mechanisms in ALD. We demonstrated that the water-insoluble polysaccharides (WIP) from effectively ameliorated the hepatic inflammatory injury and fat accumulation through modulating gut microbiota in mice with alcoholic hepatic steatosis (AHS).
View Article and Find Full Text PDFAn iron-catalyzed radical cascade cyclization of dienes initiated by an alkoxycarbonyl radical has been developed in the presence of (NH4)2S2O8, leading to a series of fused nitrogen heterocyclic compounds under relatively mild reaction conditions. The reaction is triggered by the addition of an alkyoxycarbonyl radical derived from the cleavage of alkoxyformyl hydrazide. Afterward, the formed nucleophilic radical preferred addition to the electron-neutral vinyl rather than the electron-deficient vinyl, followed by cascade 6-endo cyclization and further radical cyclization.
View Article and Find Full Text PDFA beneficial gut Bacteroides-folate-liver pathway regulating lipid metabolism is demonstrated. Oral administration of a Ganoderma meroterpene derivative (GMD) ameliorates nonalcoholic hepatic steatosis in the liver of fa/fa rats by reducing endotoxemia, enhancing lipid oxidation, decreasing de novo lipogenesis, and suppressing lipid export from the liver. An altered gut microbiota with an increase of butyrate and folate plays a causative role in the effects of GMD.
View Article and Find Full Text PDFIntracerebral hemorrhage is the most dangerous complication in tPA thrombolytic therapy for ischemic stroke, which occurs as a consequence of endothelial cell death at the blood-brain barrier (BBB) during thrombolytic reperfusion. We have previously shown that cerebral ischemia-induced rapid occludin degradation and BBB disruption. Here we demonstrated an important role of occludin degradation in facilitating the evolution of ischemic endothelial cells toward death.
View Article and Find Full Text PDFFe3O4/VAN@MIL-101(Fe) with both mesoporous and mixed-valence Fe3+/Fe2+ structures was controllably synthesized in the synthesis of MIL-101(Fe), and it was used as a bifunctional photocatalyst in both oxygen evolution reactions (OERs) and hydrogen evolution reactions (HERs) of photocatalytic water splitting. By the reduction of auxiliary ligand vanillin (VAN) and the introduction of Fe3O4, the mixed-valence Fe3+/Fe2+ structure in Fe3O4/VAN@MIL-101(Fe) was obtained, which improves the band gap of the Fe3+ reactive active center and increases the separation efficiency of photogenerated carriers. Owing to the partial difference in the structure between VAN and ligand terephthalic acid (H2BDC), hierarchical porous and vacant structures were effectively improved in Fe3O4/VAN@MIL-101(Fe), which can induce more active sites to adsorb more water molecules and shorten the electron-hole migration distance to improve the transfer efficiency of photogenerated carriers.
View Article and Find Full Text PDFA rhodium-catalyzed C-H activation/annulation of amidines with 4-diazoisochroman-3-imines has been established to afford a series of 8-amino-5H-isochromeno[3,4-c]isoquinolines in moderate to good yields with good functional group tolerance. This reaction proceeded in a sequential C-H activation/carbene migration insertion/intramolecular annulation procedure and featured the construction of a C-C and C-N bond in one pot. UV-vis and fluorescence spectral analyses of these highly fused heteroarenes were performed.
View Article and Find Full Text PDF