Publications by authors named "Shanqing Wei"

The number of seedlings per hill and the configuration of plant row spacing are important management measures to improve rice yield. In the present study, we evaluated the impact of various seedlings per hill (1, 3, 6, and 9 seedlings hill) under four different rice verities (two conventional rice, two hybrid rice) on allometric characteristics, nitrogen use efficiency (NUE) and yield in 2020 at early and late season. Results showed that compared with nine seedlings per hill (wide row spacing), the number of effective panicles, yield, grain biomass allocation, grain-to-leaf ratio, grain nitrogen accumulation, nitrogen dry matter production efficiency (NDMPE), N harvest index (NHI) of 1 seedling per hill increased by 21.

View Article and Find Full Text PDF

Soil microorganisms play vital roles in energy flow and soil nutrient cycling and, thus, are important for crop production. A detailed understanding of the complex responses of microbial communities to diverse organic manure and chemical fertilizers (CFs) is crucial for agroecosystem sustainability. However, little is known about the response of soil fungal communities and soil nutrients to manure and CFs, especially under double-rice cropping systems.

View Article and Find Full Text PDF
Article Synopsis
  • Conventional farming heavily depends on chemical fertilizers, which can harm soil quality and the environment; thus, there's a need for sustainable alternatives like manure to improve soil health and crop yield.
  • A study examined the effects of different manure and chemical fertilizer combinations on rice yield, soil nutrients, and microbial communities over two years, finding that manure significantly changed soil bacteria and improved diversity.
  • Results showed that integrated applications of manure and fertilizers enhanced soil health indicators (like pH and total nitrogen) and increased rice yield, with specific manure treatments achieving the greatest improvements in soil properties.
View Article and Find Full Text PDF

Biochar amendment can influence the abundance, activity, and community structure of soil microbes. However, scare information is present about the effect of the combined application of biochar with synthetic nitrogen (N) fertilizer under paddy field condition. We aimed to resolve this research gap in rice field conditions through different biochar in combination with N fertilizers on soil nutrients, soil microbial communities, and rice grain yield.

View Article and Find Full Text PDF

Leaf nitrogen (N) concentration plays an important role in biochemical and physiological functions, and N availability directly influences rice yield. However, excessive N fertilization is considered to be a root cause of environmental issues and low nitrogen use efficiency. Therefore, the selection of appropriate nutrient management practices and organic amendments is key to maximizing nitrogen uptake and maintaining high and sustainable rice production.

View Article and Find Full Text PDF

Background: Although many studies suggested that aluminum (Al) induced programmed cell death (PCD) in plants, the mechanism of Al-induced PCD and its effects in Al tolerance is limited. This study was to investigate the mechanism and type of Al induced PCD and the relationship between PCD and Al tolerance.

Results: In this study, two genotypes of peanut 99-1507 (Al tolerant) and ZH2 (Al sensitive) were used to investigate Al-induced PCD.

View Article and Find Full Text PDF

The accumulation of dry matter, nitrogen, phosphorus, potassium and silicon in 30 rice genotypes and their relationships under field condition were studied. The results showed that dry matter accumulated at ripening stage linearly increased with increase of nitrogen, phosphorus, potassium and silicon accumulation with highly significant correlation coefficients at both early and late season. At the same time balance of nitrogen, phosphorus, potassium and silicon accumulation was beneficial for dry matter accumulation, which linearly increased with increase of nutrient balance index and decreased with increase of nutrient deviation index.

View Article and Find Full Text PDF