We previously identified a rare mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), I132M, which confers high-level resistance to the nonnucleoside RT inhibitors (NNRTIs) nevirapine and delavirdine. In this study, we have further characterized the role of this mutation in viral replication capacity and in resistance to other RT inhibitors. Surprisingly, our data show that I132M confers marked hypersusceptibility to the nucleoside analogs lamivudine (3TC) and tenofovir at both the virus and enzyme levels.
View Article and Find Full Text PDFPrevious studies have demonstrated that nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) act as chemical enhancers of human immunodeficiency virus type 1 (HIV-1) RT dimerization. In the current study, we sought to define the role of key residues (101, 103, 108, 181, 188, 190, 225 and 318) in the NNRTI-binding pocket on HIV-1 RT heterodimer stability. Thirteen mutant RTs were constructed and evaluated for p66/p51 RT heterodimer formation using the well-established yeast two-hybrid assay.
View Article and Find Full Text PDFRecent studies have identified a role for mutations in the connection and RNase H domains of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) resistance to nucleoside analog RT inhibitors (NRTI). To provide insight into the biochemical mechanism(s) involved, we investigated the effect of the G333D mutation in the connection domain of RT on resistance to zidovudine (AZT) and lamivudine (3TC) in enzymes that contain both M184V and thymidine analog mutations (TAMs; M41L, L210W, and T215Y). Our results from steady-state kinetic, pre-steady-state kinetic, and thermodynamic analyses indicate that G333D facilitates dual resistance to AZT and 3TC in two ways.
View Article and Find Full Text PDFObjectives: The K65R mutation in HIV-1 reverse transcriptase (RT) decreases susceptibility to all approved nucleoside reverse transcriptase inhibitors (NRTI) except zidovudine by selectively decreasing the incorporation of the NRTI triphosphate compared with the natural deoxyribonucleotide triphosphate substrate. Thymidine analog mutations (TAMs) confer high-level resistance to zidovudine and cross-resistance to other NRTI by increasing excision of the chain-terminating NRTI monophosphate via a phosphorolytic cleavage reaction. Recent virology and genetic studies have shown bidirectional antagonism between K65R and TAMs.
View Article and Find Full Text PDFThe K70E mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has become more prevalent in clinical samples, particularly in isolates derived from patients for whom triple-nucleoside regimens that include tenofovir (TNV), abacavir, and lamivudine (3TC) failed. To elucidate the molecular mechanism by which this mutation confers resistance to these nucleoside RT inhibitors (NRTI), we conducted detailed biochemical analyses comparing wild-type (WT), K70E, and K65R HIV-1 RT. Pre-steady-state kinetic experiments demonstrate that the K70E mutation in HIV-1 RT allows the enzyme to discriminate between the natural deoxynucleoside triphosphate substrate and the NRTI triphosphate (NRTI-TP).
View Article and Find Full Text PDF