The alkaline comet assay is frequently used as in vivo follow-up test within different regulatory environments to characterize the DNA-damaging potential of different test items. The corresponding OECD Test guideline 489 highlights the importance of statistical analyses and historical control data (HCD) but does not provide detailed procedures. Therefore, the working group "Statistics" of the German-speaking Society for Environmental Mutation Research (GUM) collected HCD from five laboratories and >200 comet assay studies and performed several statistical analyses.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
July 2015
In the international validation study of the in vivo rat alkaline comet assay (comet assay), the Japanese Center for the Validation of Alternative Methods (JaCVAM) provided three coded chemicals to BioReliance, 1,3-dichloropropene, ethionamide and busulfan, to be tested in a combined in vivo comet/micronucleus assay. Induction of DNA damage (comet) in liver, stomach and jejunum (1,3-dichloropropene only) cells, and induction of MNPCEs in bone marrow, were examined in male Sprague-Dawley (Hsd:SD) rats following oral administration of the test chemical for three consecutive days. A dose range finding (DRF) test was performed with each chemical to determine the maximum tolerated dose (MTD).
View Article and Find Full Text PDFThis catalogue is a display of Syrian hamster embryo (SHE) cell colony photos representative of the cell transformation assay (CTA) carried out at pH 6.7. It is intended as a visual aid for the identification and the scoring of cell colonies in the conduct of the assay.
View Article and Find Full Text PDFThe Syrian hamster embryo (SHE) cell transformation assay (CTA) is a short-term in vitro assay recommended as an alternative method for testing the carcinogenic potential of chemicals. SHE cells are "normal" cells since they are diploid, genetically stable, non-tumourigenic, and have metabolic capabilities for the activation of some classes of carcinogens. The CTA, first developed in the 1960s by Berwald and Sachs (1963,1964) [3,4], is based on the change of the phenotypic feature of cell colonies expressing the first steps of the conversion of normal to neoplastic-like cells with oncogenic properties.
View Article and Find Full Text PDF