Publications by authors named "Shannon Whelan"

Energy is a common currency for any living organism, yet estimating energy expenditure in wild animals is challenging. Accelerometers are commonly used to estimate energy expenditure, via a dynamic body acceleration (DBA) or time-energy budget approach. The DBA approach estimates energy expenditure directly from acceleration but may lead to erroneous estimates during inactivity when acceleration is zero but energy expenditure is not.

View Article and Find Full Text PDF

Declining sea ice and increased variability in sea ice dynamics are altering Arctic marine food webs. Changes in sea ice dynamics and prey availability are likely to impact pagophilic (ice-dependent and ice-associated) species, such as thick-billed murres (), through changes in foraging behaviour and foraging success. At the same time, extrinsic factors, such as chick demand, and intrinsic factors, such as sex, are also likely to influence foraging behaviour and foraging success of adult murres.

View Article and Find Full Text PDF
Article Synopsis
  • Life-history theory suggests that trying to raise babies can make animals less likely to survive, but we don't fully understand why.
  • Scientists studied pelagic cormorants over 16 years to see how the energy they used while raising chicks affected their survival chances.
  • They found that most years, energy use didn't seem tied to survival, and older birds used less energy, probably because they’ve learned to do things more efficiently.
View Article and Find Full Text PDF

We provide evidence of anthropogenic materials ingestion in seabirds from a remote oceanic area, using regurgitates obtained from black-legged kittiwake (Rissa tridactyla) chicks from Middleton Island (Gulf of Alaska, USA). By means of GPS tracking of breeding adults, we identified foraging grounds where anthropogenic materials were most likely ingested. They were mainly located within the continental shelf of the Gulf of Alaska and near the Alaskan coastline.

View Article and Find Full Text PDF

Amidst the current biodiversity crisis, the availability of genomic resources for declining species can provide important insights into the factors driving population decline. In the early 1990s, the black-legged kittiwake (Rissa tridactyla), a pelagic gull widely distributed across the arctic, subarctic, and temperate zones, suffered a steep population decline following an abrupt warming of sea surface temperature across its distribution range and is currently listed as Vulnerable by the International Union for the Conservation of Nature. Kittiwakes have long been the focus for field studies of physiology, ecology, and ecotoxicology and are primary indicators of fluctuating ecological conditions in arctic and subarctic marine ecosystems.

View Article and Find Full Text PDF

The ability to efficiently measure the health and nutritional status of wild populations in situ is a valuable tool, as many methods of evaluating animal physiology do not occur in real-time, limiting the possibilities for direct intervention. This study investigates the use of blood plasma metabolite concentrations, measured via point-of-care devices or a simple plate reader assay, as indicators of nutritional state in free-living seabirds. We experimentally manipulated the energy expenditure of wild black-legged kittiwakes on Middleton Island, Alaska, and measured the plasma concentrations of glucose, cholesterol, B-hydroxybutyrate, and triglycerides throughout the breeding season, along with measures of body condition (size-corrected mass [SCM] and muscle depth).

View Article and Find Full Text PDF

Seasonal timing of breeding is usually considered to be triggered by endogenous responses linked to predictive cues (e.g., photoperiod) and supplementary cues that vary annually (e.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied how a bird called the thick-billed murre finds food in different environments, focusing on two colonies in the Arctic that are different sizes.
  • They used GPS trackers to measure how far the birds traveled and how much energy they used while foraging.
  • The larger colony’s birds had a harder time finding food compared to those at the smaller colony, especially during certain ice conditions, showing that their success depends on the environment and their colony size.
View Article and Find Full Text PDF

Body-mounted accelerometers provide a new prospect for estimating power use in flying birds, as the signal varies with the two major kinematic determinants of aerodynamic power: wingbeat frequency and amplitude. Yet wingbeat frequency is sometimes used as a proxy for power output in isolation. There is, therefore, a need to understand which kinematic parameter birds vary and whether this is predicted by flight mode (e.

View Article and Find Full Text PDF

Accelerometers in animal-attached tags are powerful tools in behavioural ecology, they can be used to determine behaviour and provide proxies for movement-based energy expenditure. Researchers are collecting and archiving data across systems, seasons and device types. However, using data repositories to draw ecological inference requires a good understanding of the error introduced according to sensor type and position on the study animal and protocols for error assessment and minimisation.

View Article and Find Full Text PDF

Breeding animals trade off maximizing energy output to increase their number of offspring with conserving energy to ensure their own survival, leading to an energetic ceiling influenced by external, environmental factors or by internal, physiological factors. We examined whether internal or external factors limited energy expenditure by supplementally feeding breeding black-legged kittiwakes varying in individual quality, based on earlier work that defined late breeders as low-quality and early breeders as high-quality individuals. We tested whether energy expenditure increased when food availability decreased in both low- and high-quality birds; we predicted this would only occur in high-quality individuals capable of sustaining high levels of energy expenditure.

View Article and Find Full Text PDF

Phenotypic plasticity allows organisms to adjust the timing of life-history events in response to environmental and demographic conditions. Shifts by individuals in the timing of breeding with respect to variation in age and temperature are well documented in nature, and these changes are known to scale to affect population dynamics. However, relatively little is known about how organisms alter phenology in response to other demographic and environmental factors.

View Article and Find Full Text PDF
Article Synopsis
  • Seabirds like rhinoceros auklets serve as indicators for marine pollution, specifically mercury (Hg), due to their migratory patterns and ability to track contaminants over time and space.
  • The study measured Hg levels in different tissues (rectrices, body feathers, and blood) to explore the timing and source of Hg exposure during their annual cycle, confirming that these tissues reflect different exposure periods.
  • Results showed a significant pathway of mercury accumulation from the environment to birds and then to terrestrial plants, with variations in Hg levels linked to their migration patterns and local pollution rates.
View Article and Find Full Text PDF

Current food supply is a major driver of timing of breeding in income-breeding animals, likely because increased net energy balance directly increases reproductive hormones and advances breeding. In capital breeders, increased net energy balance increases energy reserves, which eventually leads to improved reproductive readiness and earlier breeding. To test the hypothesis that phenology of income-breeding birds is independent of energy reserves, we conducted an experiment on food-supplemented ("fed") and control female black-legged kittiwakes (Rissa tridactyla).

View Article and Find Full Text PDF

Muscle ultrastructure is closely linked with athletic performance in humans and lab animals, and presumably plays an important role in the movement ecology of wild animals. Movement is critical for wild animals to forage, escape predators and reproduce. However, little evidence directly links muscle condition to locomotion in the wild.

View Article and Find Full Text PDF

Individual condition at one stage of the annual cycle is expected to influence behaviour during subsequent stages, yet experimental evidence of food-mediated carry-over effects is scarce. We used a food supplementation experiment to test the effects of food supply during the breeding season on migration phenology and non-breeding behaviour. We provided an unlimited supply of fish to black-legged kittiwakes () during their breeding season on Middleton Island, Alaska, monitored reproductive phenology and breeding success, and used light-level geolocation to observe non-breeding behaviour.

View Article and Find Full Text PDF

Point-of-care devices offer the potential to democratize a suite of physiological endpoints and assess the nutritional state of wild animals through plasma metabolite profiling. Measurements of plasma metabolites typically occur on frozen tissue in the laboratory, thus dissociating measurements from field observations. Point-of-care devices, widely used in veterinary and human medicine, provide rapid results (seconds or minutes) allowing in situ measurements of wild animals in remote areas without the need for access to freezers.

View Article and Find Full Text PDF

Endothermic animals regulate body temperature by balancing metabolic heat production and heat exchange with the environment. Heat dissipation is especially important during and immediately after demanding activities such as flapping flight, the most energetically expensive mode of locomotion. As uninsulated appendages, bird bills present a potential avenue for efficient heat dissipation.

View Article and Find Full Text PDF

Many long-lived animals do not appear to show classic signs of aging, perhaps because they show negligible senescence until dying from "catastrophic" mortality. Muscle senescence is seldom examined in wild animals, yet decline in muscle function is one of the first signs of aging in many lab animals and humans. Seabirds are an excellent study system for physiological implications of aging because they are long-lived animals that actively forage and reproduce in the wild.

View Article and Find Full Text PDF

Timing of reproduction can influence individual fitness whereby early breeders tend to have higher reproductive success than late breeders. However, the fitness consequences of timing of breeding may also be influenced by environmental conditions after the commencement of breeding. We tested whether ambient temperatures during the incubation and early nestling periods modulated the effect of laying date on brood size and dominant juvenile survival in gray jays (), a sedentary boreal species whose late winter nesting depends, in part, on caches of perishable food.

View Article and Find Full Text PDF