Publications by authors named "Shannon W Davis"

Variants in the PRKRA gene, which encodes PACT, cause the early-onset primary dystonia DYT-PRKRA, a movement disorder associated with disruption of coordinated muscle movements. PACT and its murine homolog RAX activate protein kinase R (PKR; also known as EIF2AK2) by a direct interaction in response to cellular stressors to mediate phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Mice homozygous for a naturally arisen, recessively inherited frameshift mutation, Prkralear-5J, exhibit progressive dystonia.

View Article and Find Full Text PDF
Article Synopsis
  • - Mutations in the gene encoding PACT/RAX lead to early onset primary dystonia DYT-PRKRA, a movement disorder that affects muscle coordination.
  • - The study shows that the mutated PACT/RAX protein can still interact with PKR but inhibits its activation, affecting critical cellular processes.
  • - Observations in mutant mice reveal cerebellar developmental issues and reduced eIF2α phosphorylation, suggesting that PACT/RAX is essential for proper cerebellar development and is linked to the symptoms of dystonia.
View Article and Find Full Text PDF

Background: Congenital hypopituitarism (CH) and its associated syndromes, septo-optic dysplasia (SOD) and holoprosencephaly (HPE), are midline defects that cause significant morbidity for affected people. Variants in 67 genes are associated with CH, but a vast majority of CH cases lack a genetic diagnosis. Whole exome and whole genome sequencing of CH patients identifies sequence variants in genes known to cause CH, and in new candidate genes, but many of these are variants of uncertain significance (VUS).

View Article and Find Full Text PDF

Obesity alters levels of pituitary hormones that govern hepatic immune-metabolic homeostasis, dysregulation of which leads to nonalcoholic fatty liver disease (NAFLD). However, the impact of obesity on intra-pituitary homeostasis is largely unknown. Here, we uncovered a blunted unfolded protein response (UPR) but elevated inflammatory signatures in pituitary glands of obese mice and humans.

View Article and Find Full Text PDF

Peromyscus maniculatus, including the laboratory stock BW, have been used as a model organism for autism spectrum disorder and obsessive-compulsive disorder because of the high occurrence of stereotypy. Several studies have identified neurological and environmental components of the phenotype; however, the heritability of the phenotype has not been examined. This study characterizes the incidence and heritability of vertical jumping stereotypy (VS) and backflipping (BF) behavior in the BW stock of the Peromyscus Genetic Stock Center, which are indicative of autism spectrum disorders.

View Article and Find Full Text PDF

With recent advances in technologies to profile multi-omics data at the single-cell level, integrative multi-omics data analysis has been increasingly popular. It is increasingly common that information such as methylation changes, chromatin accessibility, and gene expression are jointly collected in a single-cell experiment. In biomedical studies, it is often of interest to study the associations between various data types and to examine how these associations might change according to other factors such as cell types and gene regulatory components.

View Article and Find Full Text PDF

Autism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. Genetic findings suggest that there is an overrepresentation of chromatin regulatory genes among the genes associated with ASD. ASH1 like histone lysine methyltransferase (ASH1L) was identified as a major risk factor for ASD.

View Article and Find Full Text PDF

Germline mutations in BRAF and other components of the MAPK pathway are associated with the congenital syndromes collectively known as RASopathies. Here, we report the association of Septo-Optic Dysplasia (SOD) including hypopituitarism and Cardio-Facio-Cutaneous (CFC) syndrome in patients harbouring mutations in BRAF. Phosphoproteomic analyses demonstrate that these genetic variants are gain-of-function mutations leading to activation of the MAPK pathway.

View Article and Find Full Text PDF

Background: Peromyscus are the most common mammalian species in North America and are widely used in both laboratory and field studies. The deer mouse, P. maniculatus and the old-field mouse, P.

View Article and Find Full Text PDF

Smoking is the largest preventable cause of death and disease in the United States. However, <5% of quit attempts are successful, underscoring the urgent need for novel therapeutics. Microglia are one untapped therapeutic target.

View Article and Find Full Text PDF

The complex development of the human nervous system has been traditionally studied using a combination of animal models, human post-mortem brain tissue, and human genetics studies. However, there has been a lack of experimental human cellular models that would allow for a more precise elucidation of the intricate dynamics of early human brain development. The development of stem cell technologies, both embryonic and induced pluripotent stem cells (iPSCs), has given neuroscientists access to the previously inaccessible early stages of human brain development.

View Article and Find Full Text PDF

The pituitary gland is a critical organ that is necessary for many physiological processes, including growth, reproduction, and stress response. The secretion of pituitary hormones from specific cell types regulates these essential processes. Pituitary hormone cell types arise from a common pool of pituitary progenitors, and mutations that disrupt the formation and differentiation of pituitary progenitors result in hypopituitarism.

View Article and Find Full Text PDF

The pituitary organizer is a domain within the ventral diencephalon that expresses Bmp4, Fgf8, and Fgf10, which induce the formation of the pituitary precursor, Rathke's pouch, from the oral ectoderm. The WNT signaling pathway regulates this pituitary organizer such that loss of Wnt5a leads to an expansion of the pituitary organizer and an enlargement of Rathke's pouch. WNT signaling is classified into canonical signaling, which is mediated by β-CATENIN, and noncanonical signaling, which operates independently of β-CATENIN.

View Article and Find Full Text PDF

The anterior pituitary gland is comprised of specialized cell-types that produce and secrete polypeptide hormones in response to hypothalamic input and feedback from target organs. These specialized cells arise from stem cells that express SOX2 and the pituitary transcription factor PROP1, which is necessary to establish the stem cell pool and promote an epithelial to mesenchymal-like transition, releasing progenitors from the niche. The adult anterior pituitary responds to physiological challenge by mobilizing the SOX2-expressing progenitor pool and producing additional hormone-producing cells.

View Article and Find Full Text PDF

Background: The pituitary gland is a highly vascularized tissue that requires coordinated interactions between the neural ectoderm, oral ectoderm, and head mesenchyme during development for proper physiological function. The interactions between the neural ectoderm and oral ectoderm, especially the role of the pituitary organizer in shaping the pituitary precursor, Rathke's pouch, are well described. However, less is known about the role of head mesenchyme in pituitary organogenesis.

View Article and Find Full Text PDF

Deer mice, or Peromyscus maniculatus, are an emerging model system for use in biomedicine. P. maniculatus are similar in appearance to laboratory mice, Mus musculus, but are more closely related to hamsters than to Mus.

View Article and Find Full Text PDF

Mutations in PROP1, the most common known cause of combined pituitary hormone deficiency in humans, can result in the progressive loss of all hormones of the pituitary anterior lobe. In mice, Prop1 mutations result in the failure to initiate transcription of Pou1f1 (also known as Pit1) and lack somatotropins, lactotropins, and thyrotropins. The basis for this species difference is unknown.

View Article and Find Full Text PDF

Sine oculis-related homeobox 3 (SIX3) and SIX6, 2 closely related homeodomain transcription factors, are involved in development of the mammalian neuroendocrine system and mutations of Six6 adversely affect fertility in mice. We show that both small interfering RNA knockdown in gonadotrope cell lines and knockout of Six6 in both embryonic and adult male mice (Six6 knockout) support roles for SIX3 and SIX6 in transcriptional regulation in gonadotrope gene expression and that SIX3 and SIX6 can functionally compensate for each other. Six3 and Six6 expression patterns in gonadotrope cell lines reflect the timing of the expression of pituitary markers they regulate.

View Article and Find Full Text PDF

Many aspects of pituitary development have become better understood in the past two decades. The signaling pathways regulating pituitary growth and shape have emerged, and the balancing interactions between the pathways are now appreciated. Markers for multipotent progenitor cells are being identified, and signature transcription factors have been discovered for most hormone-producing cell types.

View Article and Find Full Text PDF

Tissue-specific expression of cre recombinase is a well-established genetic tool to analyze gene function, and it is limited only by the efficiency and specificity of available cre mouse strains. Here, we report the generation of a transgenic line containing a cre cassette with codon usage optimized for mammalian cells (iCre) under the control of a mouse glycoprotein hormone α-subunit (αGSU) regulatory sequences in a bacterial artificial chromosome genomic clone. Initial analysis of this transgenic line, Tg(αGSU-iCre), with cre reporter strains reveals onset of cre activity in the differentiating cells of the developing anterior pituitary gland at embryonic day 12.

View Article and Find Full Text PDF

Stem cells have been identified in organs with both low and high cell turnover rates. They are characterized by the expression of key marker genes for undifferentiated cells, the ability to self-renew, and the ability to regenerate tissue after cell loss. Several recent reports present evidence for the presence of pituitary stem cells.

View Article and Find Full Text PDF

The intermediate and anterior lobes of the pituitary gland are derived from an invagination of oral ectoderm that forms Rathke's pouch. During gestation proliferating cells are enriched around the pouch lumen, and they appear to delaminate as they exit the cell cycle and differentiate. During late mouse gestation and the postnatal period, anterior lobe progenitors re-enter the cell cycle and expand the populations of specialized, hormone-producing cells.

View Article and Find Full Text PDF

RNA interference (RNAi) is a powerful strategy for studying the phenotypic consequences of reduced gene expression levels in model systems. To develop a method for the rapid characterization of the developmental consequences of gene dysregulation, we tested the use of RNAi for "transient transgenic" knockdown of mRNA in mouse embryos. These methods included lentiviral infection as well as transposition using the Sleeping Beauty (SB) and PiggyBac (PB) transposable element systems.

View Article and Find Full Text PDF

Genetic cases of congenital pituitary hormone deficiency are common and many are caused by transcription factor defects. Mouse models with orthologous mutations are invaluable for uncovering the molecular mechanisms that lead to problems in organ development and typical patient characteristics. We are using mutant mice defective in the transcription factors PROP1 and POU1F1 for gene expression profiling to identify target genes for these critical transcription factors and candidates for cases of pituitary hormone deficiency of unknown aetiology.

View Article and Find Full Text PDF