Reticulocyte Binding Protein Homologue (RH5), a leading malaria vaccine candidate, is essential for erythrocyte invasion by the parasite, interacting with the human host receptor, basigin. RH5 has a small number of polymorphisms relative to other blood-stage antigens, and studies have shown that vaccine-induced antibodies raised against RH5 are strain-transcending, however most studies investigating RH5 diversity have been done in Africa. Understanding the genetic diversity and evolution of malaria antigens in other regions is important for their validation as vaccine candidates.
View Article and Find Full Text PDFIntensive malaria control and elimination efforts have led to substantial reductions in malaria incidence over the past two decades. However, the reduction in Plasmodium falciparum malaria cases has led to a species shift in some geographic areas, with P. vivax predominating in many areas outside of Africa.
View Article and Find Full Text PDFChildren with hemoglobin AC or AS have decreased susceptibility to clinical malaria. Parasite variant surface antigen (VSA) presentation on the surface of infected erythrocytes is altered in erythrocytes with hemoglobin C (Hb AC) or sickle trait (Hb AS) mutations in vitro. The protective role of incomplete or altered VSA presentation against clinical malaria in individuals with Hb AC or AS is unclear.
View Article and Find Full Text PDFUnlabelled: parasites, the causative organism of malaria, caused over 600,000 deaths in 2022. In Mali, causes the majority of malaria cases and deaths and is transmitted seasonally. Anti-malarial immunity develops slowly over repeated exposures to and some aspects of this immunity (e.
View Article and Find Full Text PDF, , and are three of the most widespread vectors of malaria parasites, with geographical ranges stretching across wide swaths of Africa. Understanding the population structure of these closely related species, including the extent to which populations are connected by gene flow, is essential for understanding how vector control implemented in one location might indirectly affect vector populations in other locations. Here, we assessed the population structure of each species based on a combined data set of publicly available and newly processed whole-genome sequences.
View Article and Find Full Text PDFGenomic surveillance is crucial for identifying at-risk populations for targeted malaria control and elimination. Identity-by-descent (IBD) is increasingly being used in population genomics to estimate genetic relatedness, effective population size ( ), population structure, and signals of positive selection. Despite its potential, a thorough evaluation of IBD segment detection tools for species with high recombination rates, such as , remains absent.
View Article and Find Full Text PDFMalaria vaccine development is hampered by extensive antigenic variation and complex life stages of Plasmodium species. Vaccine development has focused on a small number of antigens, many of which were identified without utilizing systematic genome-level approaches. In this study, we implement a machine learning-based reverse vaccinology approach to predict potential new malaria vaccine candidate antigens.
View Article and Find Full Text PDFMalaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD), yet strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we use simulations, a true IBD inference algorithm, and empirical data sets from different malaria transmission settings to investigate the extent of this bias and explore potential correction strategies. We analyze whole genome sequence data generated from 640 new and 3089 publicly available Plasmodium falciparum clinical isolates.
View Article and Find Full Text PDFIn Bandiagara, Mali, children experience on average two clinical malaria episodes per year. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, can vary dramatically among children. We simultaneously characterize host and parasite gene expression profiles from 136 Malian children with symptomatic falciparum malaria and examine differences in the relative proportion of immune cells and parasite stages, as well as in gene expression, associated with infection and or patient characteristics.
View Article and Find Full Text PDFIn Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 genes.
View Article and Find Full Text PDFIn Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 Plasmodium genes.
View Article and Find Full Text PDFMalaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD). Yet, strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we utilized simulations, a true IBD inference algorithm, and empirical datasets from different malaria transmission settings to investigate the extent of such bias and explore potential correction strategies.
View Article and Find Full Text PDFWellcome Open Res
January 2023
We describe the MalariaGEN Pf7 data resource, the seventh release of genome variation data from the MalariaGEN network. It comprises over 20,000 samples from 82 partner studies in 33 countries, including several malaria endemic regions that were previously underrepresented. For the first time we include dried blood spot samples that were sequenced after selective whole genome amplification, necessitating new methods to genotype copy number variations.
View Article and Find Full Text PDFBackground: Estimating malaria risk associated with work locations and travel across a region provides local health officials with information useful to mitigate possible transmission paths of malaria as well as understand the risk of exposure for local populations. This study investigates malaria exposure risk by analysing the spatial pattern of malaria cases (primarily Plasmodium vivax) in Ubon Ratchathani and Sisaket provinces of Thailand, using an ecological niche model and machine learning to estimate the species distribution of P. vivax malaria and compare the resulting niche areas with occupation type, work locations, and work-related travel routes.
View Article and Find Full Text PDFPlasmodium parasites caused 241 million cases of malaria and over 600,000 deaths in 2020. Both P. falciparum and P.
View Article and Find Full Text PDFDespite the scale-up of interventions against malaria over the past decade, this disease remains a leading threat to health in Malawi. To evaluate the epidemiology of both Plasmodium falciparum infection and malaria disease, the Malawi International Center of Excellence for Malaria Research (ICEMR) has developed and implemented diverse and robust surveillance and research projects. Descriptive studies in ICEMR Phase 1 increased our understanding of the declining effectiveness of long-lasting insecticidal nets (LLINs), the role of school-age children in malaria parasite transmission, and the complexity of host-parasite interactions leading to disease.
View Article and Find Full Text PDFFailure to account for genetic diversity of antigens during vaccine design may lead to vaccine escape. To evaluate the vaccine escape potential of antigens used in vaccines currently in development or clinical testing, we surveyed the genetic diversity, measured population differentiation, and performed in silico prediction and analysis of T-cell epitopes of ten such pre-erythrocytic-stage antigens using whole-genome sequence data from 1010 field isolates. Of these, 699 were collected in Africa (Burkina Faso, Cameroon, Guinea, Kenya, Malawi, Mali, and Tanzania), 69 in South America (Brazil, Colombia, French Guiana, and Peru), 59 in Oceania (Papua New Guinea), and 183 in Asia (Cambodia, Myanmar, and Thailand).
View Article and Find Full Text PDFThroughout a phase IIIb/IV efficacy study of repeated treatment with four artemisinin-based combination therapies, significant heterogeneity was found in the number of clinical episodes experienced by individuals during the 2-year follow-up. Several factors, including host, parasite, and environmental factors, may contribute to the differential malaria incidence. We aimed to identify risk factors of malaria incidence in the context of a longitudinal study of the efficacy of different artemisinin-based combination therapy regimens in Bougoula-Hameau, a high-transmission setting in Mali.
View Article and Find Full Text PDFBackground: RIFINs and STEVORs are variant surface antigens expressed by P. falciparum that play roles in severe malaria pathogenesis and immune evasion. These two highly diverse multigene families feature multiple paralogs, making their classification challenging using traditional bioinformatic methods.
View Article and Find Full Text PDFgenes encode Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) antigens. These highly diverse antigens are displayed on the surface of infected erythrocytes and play a critical role in immune evasion and sequestration of infected erythrocytes. Studies of expression using non-leukocyte-depleted blood are challenging because of the predominance of host genetic material and lack of conserved segments.
View Article and Find Full Text PDFKnowledge of the Plasmodium falciparum antigens that comprise the human liver stage immunoproteome is important for pre-erythrocytic vaccine development, but, compared with the erythrocytic stage immunoproteome, more challenging to classify. Previous studies of P. falciparum antibody responses report IgG and rarely IgA responses.
View Article and Find Full Text PDF