Publications by authors named "Shannon S Schiereck"

Behavior is sloppy: a multitude of cognitive strategies can produce similar behavioral read-outs. An underutilized approach is to combine multifaceted behavioral analyses with neural recordings to resolve cognitive strategies. Here we show that rats performing a decision-making task exhibit distinct strategies over training, and these cognitive strategies are decipherable from orbitofrontal cortex (OFC) neural dynamics.

View Article and Find Full Text PDF

The value of the environment determines animals' motivational states and sets expectations for error-based learning. How are values computed? Reinforcement learning systems can store or cache values of states or actions that are learned from experience, or they can compute values using a model of the environment to simulate possible futures. These value computations have distinct trade-offs, and a central question is how neural systems decide which computations to use or whether/how to combine them.

View Article and Find Full Text PDF

The value of the environment determines animals' motivational states and sets expectations for error-based learning. How are values computed? Reinforcement learning systems can store or "cache" values of states or actions that are learned from experience, or they can compute values using a model of the environment to simulate possible futures3. These value computations have distinct trade-offs, and a central question is how neural systems decide which computations to use or whether/how to combine them.

View Article and Find Full Text PDF

Multiple evidence in rodents shows that the strength of excitatory synapses in the cerebral cortex and hippocampus is greater after wake than after sleep. The widespread synaptic weakening afforded by sleep is believed to keep the cost of synaptic activity under control, promote memory consolidation, and prevent synaptic saturation, thus preserving the brain's ability to learn day after day. The cerebellum is highly plastic and the Purkinje cells, the sole output neurons of the cerebellar cortex, are endowed with a staggering number of excitatory parallel fiber synapses.

View Article and Find Full Text PDF

In this issue of Cell, Spellman and colleagues record and manipulate the activity of neurons in the medial prefrontal cortex of mice performing a task in which they must pay attention to different stimuli. They show that this brain region is important for monitoring the animals' performance, and neurons that appear to contribute to behavior reside in deep cortical layers.

View Article and Find Full Text PDF

In adolescent and adult brains several molecular, electrophysiological, and ultrastructural measures of synaptic strength are higher after wake than after sleep [1, 2]. These results support the proposal that a core function of sleep is to renormalize the increase in synaptic strength associated with ongoing learning during wake, to reestablish cellular homeostasis and avoid runaway potentiation, synaptic saturation, and memory interference [2, 3]. Before adolescence however, when the brain is still growing and many new synapses are forming, sleep is widely believed to promote synapse formation and growth.

View Article and Find Full Text PDF

The "non-specific" ventromedial thalamic nucleus (VM) has long been considered a candidate for mediating cortical arousal due to its diffuse, superficial projections, but direct evidence was lacking. Here, we show in mice that the activity of VM calbindin1-positive matrix cells is high in wake and REM sleep and low in NREM sleep, and increases before cortical activity at the sleep-to-wake transition. Optogenetic stimulation of VM cells rapidly awoke all mice from NREM sleep and consistently caused EEG activation during slow wave anesthesia, while arousal did not occur from REM sleep.

View Article and Find Full Text PDF