Peptides typically have poor biostabilities, and natural sequences cannot easily be converted into drug-like molecules without extensive medicinal chemistry. We have adapted mRNA display to drive the evolution of highly stable cyclic peptides while preserving target affinity. To do this, we incorporated an unnatural amino acid in an mRNA display library that was subjected to proteolysis prior to selection for function.
View Article and Find Full Text PDFPeptides constructed with the 20 natural amino acids are generally considered to have little therapeutic potential because they are unstable in the presence of proteases and peptidases. However, proteolysis cleavage can be idiosyncratic, and it is possible that natural analogues of functional sequences exist that are highly resistant to cleavage. Here, we explored this idea in the context of peptides that bind to the signaling protein Gαi1.
View Article and Find Full Text PDFSince the invention of hybridoma technology, methods for generating affinity reagents that bind specific target molecules have revolutionized biology and medicine. In the postgenomic era, there is a pressing need to accelerate the pace of ligand discovery to elucidate the functions of a rapidly growing number of newly characterized molecules and their modified states. Nonimmunoglobulin-based proteins such as DARPins, affibodies, and monobodies represent attractive alternatives to traditional antibodies as these are small, soluble, disulfide-free, single-domain scaffolds that can be selected from combinatorial libraries and expressed in bacteria.
View Article and Find Full Text PDF