Neutral low-molecular-weight organics such as methyl nitrate that can readily pass through reverse osmosis (RO) membranes employed in potable water reuse facilities attract interest owing to public health considerations. In this study, a novel determination method based on high-performance liquid chromatography, online photochemical conversion to peroxynitrite, and luminol chemiluminescence detection was developed for methyl nitrate measurement in treated water. The maximum photochemical conversion efficiency of methyl nitrate to peroxynitrite was found to be 6.
View Article and Find Full Text PDFNatural attenuation of N-nitrosodimethylamine (NDMA) and NDMA precursors was evaluated in infiltration basins, a riverbed filtration system, and constructed wetlands operated as part of a managed aquifer recharge system. Initial NDMA concentrations up to 9.0 ng/L in infiltration basins (advanced purified, recycled water) before sunrise declined to non-detect (<1.
View Article and Find Full Text PDFThe influence of reverse osmosis (RO) membrane age on rejection of N-nitrosodimethylamine (NDMA) precursors was evaluated for a full-scale potable water reuse facility. The rejection of NDMA precursors decreased slightly with increased membrane age in most RO membrane products evaluated, but remained high overall (91% average). Chloride rejection was well-correlated with rejection of NDMA precursors.
View Article and Find Full Text PDFA newly developed, ion exchange-based inline pretreatment system was used to mitigate the effect of background constituents in natural water and treated wastewater to achieve rapid, reliable, and sensitive analysis of N-nitrosamines. The pretreatment system (anion exchange module, AEM) was incorporated into a high-performance liquid chromatograph (HPLC) coupled with a photochemical reactor (PR) and chemiluminescence (CL) detector (HPLC-PR-CL), which can analyze four hydrophilic N-nitrosamines at ng/L levels. This system requires no pre-concentration of the water sample nor the use of deuterated surrogates, unlike other conventional N-nitrosamine analytical techniques.
View Article and Find Full Text PDF