Publications by authors named "Shannon L Layland"

Transplantation of donor islets of Langerhans is a potential therapeutic approach for patients with diabetes mellitus; however, its success is limited by islet death and dysfunction during the initial hypoxic conditions at the transplantation site. This highlights the need to support the donor islets in the days post-transplantation until the site is vascularized. It was previously demonstrated that the extracellular matrix (ECM) proteins nidogen-1 (NID1) and decorin (DCN) improve the functionality and survival of the β-cell line, EndoC-βH3, and the viability of human islets post-isolation.

View Article and Find Full Text PDF

Endothelial cells (ECs) play a crucial role in maintaining tissue homeostasis and functionality. Depending on their tissue of origin, ECs can be highly heterogeneous regarding their morphology, gene and protein expression, functionality, and signaling pathways. Understanding the interaction between organ-specific ECs and their surrounding tissue is therefore critical when investigating tissue homeostasis, disease development, and progression.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are working on using stem cells to create insulin-producing cells to help treat type 1 diabetes.
  • They developed a method to speed up the process of making these cells by adding specific signals that help them mature faster.
  • The new cells show some of the right markers and can respond to sugar levels, but they still need more improvement to work as well as insulin-producing cells from adults.
View Article and Find Full Text PDF

Understanding the immune system's foreign body response (FBR) is essential when developing and validating a biomaterial. Macrophage activation and proliferation are critical events in FBR that can determine the material's biocompatibility and fate in vivo. In this study, two different macro-encapsulation pouches intended for pancreatic islet transplantation were implanted into streptozotocin-induced diabetes rat models for 15 days.

View Article and Find Full Text PDF

Cardiomyopathies are associated with fibrotic remodeling of the heart, which is characterized by the excessive accumulation of collagen type I (COL I) due to chronic inflammation and suspected epigenetic influences. Despite the severity and high mortality rate of cardiac fibrosis, current treatment options are often inadequate, underscoring the importance of gaining a deeper understanding of the disease's underlying molecular and cellular mechanisms. In this study, the extracellular matrix (ECM) and nuclei in fibrotic areas of different cardiomyopathies were molecularly characterized by Raman microspectroscopy and imaging and compared with the control myocardium.

View Article and Find Full Text PDF

Fibrosis is a consequence of the pathological remodeling of extracellular matrix (ECM) structures in the connective tissue of an organ. It is often caused by chronic inflammation, which over time, progressively leads to an excess deposition of collagen type I (COL I) that replaces healthy tissue structures, in many cases leaving a stiff scar. Increasing fibrosis can lead to organ failure and death; therefore, developing methods that potentially allow real-time monitoring of early onset or progression of fibrosis are highly valuable.

View Article and Find Full Text PDF

Transplantation of islets of Langerhans is a promising alternative treatment strategy in severe cases of type 1 diabetes mellitus; however, the success rate is limited by the survival rate of the cells post-transplantation. Restoration of the native pancreatic niche during transplantation potentially can help to improve cell viability and function. Here, we assessed for the first time the regulatory role of the small leucine-rich proteoglycan decorin (DCN) in insulin secretion in human β-cells, and its impact on pancreatic extracellular matrix (ECM) protein expression in vitro.

View Article and Find Full Text PDF

The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells.

View Article and Find Full Text PDF

(1) Background: Cervical intraepithelial neoplasia (CIN) of long-term persistence or associated with individual treatment indications often requires highly invasive treatments. These are associated with risks of bleeding, infertility, and pregnancy complications. For low- and middle-income countries (LMICs), standard treatment procedures are difficult to implement and manage.

View Article and Find Full Text PDF

Hurdles for effective tumor therapy are delayed detection and limited effectiveness of systemic drug therapies by patient-specific multidrug resistance. Non-invasive bioimaging tools such as fluorescence lifetime imaging microscopy (FLIM) and Raman-microspectroscopy have evolved over the last decade, providing the potential to be translated into clinics for early-stage disease detection, in vitro drug screening, and drug efficacy studies in personalized medicine. Accessing tissue- and cell-specific spectral signatures, Raman microspectroscopy has emerged as a diagnostic tool to identify precancerous lesions, cancer stages, or cell malignancy.

View Article and Find Full Text PDF

In this study, we describe the production of hybrid gelatin-poly-L-lactide electrospun scaffolds whose hydrophilicity was controlled by binding increasing concentrations of hyaluronic acid (HA). We show that cross-linking has advantages over coating when aiming to functionalize the scaffolds with HA. The here described scaffolds structurely mimicked the complexity of the extracellular matrix, and when excited by second harmonic generation, they produced a signal that is typical of collagen-containing biological fibers.

View Article and Find Full Text PDF

Advancements in type 1 diabetes mellitus treatments have vastly improved in recent years. The move toward a bioartificial pancreas and other fully implantable systems could help restore patient's glycemic control. However, the long-term success of implantable medical devices is often hindered by the foreign body response.

View Article and Find Full Text PDF

Ischemia impacts multiple organ systems and is the major cause of morbidity and mortality in the developed world. Ischemia disrupts tissue homeostasis, driving cell death, and damages tissue structure integrity. Strategies to heal organs, like the infarcted heart, or to replace cells, as done in pancreatic islet -cell transplantations, are often hindered by ischemic conditions.

View Article and Find Full Text PDF

Pancreatic islet isolation from donor pancreases is an essential step for the transplantation of insulin-secreting β-cells as a therapy to treat type 1 diabetes mellitus. This process however damages islet basement membranes, which can lead to islet dysfunction or death. Posttransplantation, islets are further stressed by a hypoxic environment and immune reactions that cause poor engraftment and graft failure.

View Article and Find Full Text PDF

The use of biomaterials and biomaterial functionalization is a promising approach to support pancreatic islet viability posttransplantation in an effort to reduce insulin dependence for patients afflicted with diabetes mellitus type 1. Extracellular matrix (ECM) proteins are known to impact numerous reparative functions in the body. Assessing how endogenously expressed pancreatic ECM proteins are affected by posttransplant-like hypoxic conditions may provide significant insights toward the development of tissue-engineered therapeutic strategies to positively influence β-cell survival, proliferation, and functionality.

View Article and Find Full Text PDF

The cells and tissues of the human body are constantly exposed to exogenous and endogenous forces that are referred to as biomechanical cues. They guide and impact cellular processes and cell fate decisions on the nano-, micro- and macro-scale, and are therefore critical for normal tissue development and maintaining tissue homeostasis. Alterations in the extracellular matrix composition of a tissue combined with abnormal mechanosensing and mechanotransduction can aberrantly activate signaling pathways that promote disease development.

View Article and Find Full Text PDF

β-Cell functionality and survival are highly dependent on the cells' microenvironment and cell-cell interactions. Since the pancreas is a highly vascularized organ, the crosstalk between β-cells and endothelial cells (ECs) is vital to ensure proper function. To understand the interaction of pancreatic β-cells with vascular ECs, we sought to investigate the impact of the spatial distribution on the interaction of human cell line-based β-cells (EndoC-βH3) and human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

The increasing prevalence of diabetes, its heterogeneity, and the limited number of treatment options drive the need for physiologically relevant assay platforms with human genetic background that have the potential to improve mechanistic understanding and e\xpedite diabetes-related research and treatment. In this study, we developed an endocrine pancreas-on-a-chip model based on a tailored microfluidic platform, which enables self-guided trapping of single human pseudo-islets. Continuous, low-shear perfusion provides a physiologically relevant microenvironment especially important for modeling and monitoring of the endocrine function as well as sufficient supply with nutrients and oxygen.

View Article and Find Full Text PDF

Decorin (DCN) is an important small leucine-rich proteoglycan present in the extracellular matrix (ECM) of many organs and tissues. Endothelial progenitor cells (EPCs) are able to interact with the surrounding ECM and bind to molecules such as DCN. Here, we recombinantly produced full-length human DCN under good laboratory practice (GLP) conditions, and after detailed immunological characterization, we investigated its potential to attract murine and human EPCs (mEPCs and hECFCs).

View Article and Find Full Text PDF

Bioreactors are essential cell and tissue culture tools that allow the introduction of biophysical signals into in vitro cultures. One major limitation is the need to interrupt experiments and sacrifice samples at certain time points for analyses. To address this issue, we designed a bioreactor that combines high-resolution contact-free imaging and continuous flow in a closed system that is compatible with various types of microscopes.

View Article and Find Full Text PDF

Cardiovascular disease remains a leading cause of mortality and morbidity worldwide. Embryonic stem cell-derived cardiomyocytes (ESC-CMs) may offer significant advances in creating in vitro cardiac tissues for disease modeling, drug testing, and elucidating developmental processes; however, the induction of ESCs to a more adult-like CM phenotype remains challenging. In this study, we developed a bioreactor system to employ pulsatile flow (1.

View Article and Find Full Text PDF

Myocardial infarction (MI) results in debilitating remodeling of the myocardial extracellular matrix (ECM). In this proof-of-principle study it was sought to modulate this aggressive remodeling by injecting a hyaluronic acid-based reservoir delivering exogenous microRNA-29B (miR-29B). This proof-of-principal study was executed whereby myocardial ischemia/reperfusion was performed on C57BL/6 mice for 45 min after which five 10 μL boluses of a hydrogel composed of thiolated hyaluronic acid cross-linked with poly (ethylene glycol) diacrylate, containing exogenous miR-29B as an active therapy, were injected into the border zone of the infarcted myocardium.

View Article and Find Full Text PDF

Transdifferentiation of one cell type to another has garnered significant research efforts in recent years. As cardiomyocyte loss following myocardial infarction becomes debilitating for cardiac patients, the option of an autologous source of cardiomyocytes not derived from multi/pluripotent stem cell sources is an attractive option. Such direct programming has been clearly realized with the use of transcription factors, microRNAs and more recently small molecule delivery to enhance epigenetic modifications, all albeit with low efficiencies in vitro.

View Article and Find Full Text PDF

One major obstacle to the application of stem cell-derived cardiomyocytes (CMs) for disease modeling and clinical therapies is the inability to identify the developmental stage of these cells without the need for genetic manipulation or utilization of exogenous markers. In this study, we demonstrate that Raman microspectroscopy can non-invasively identify embryonic stem cell (ESC)-derived chamber-specific CMs and monitor cell maturation. Using this marker-free approach, Raman peaks were identified for atrial and ventricular CMs, ESCs were successfully discriminated from their cardiac derivatives, a distinct phenotypic spectrum for ESC-derived CMs was confirmed, and unique spectral differences between fetal versus adult CMs were detected.

View Article and Find Full Text PDF

The elucidation of mechanisms in semilunar valve development might enable the development of new therapies for congenital heart disorders. Here, we found differences in proliferation-associated genes and genes repressed by VEGF between human semilunar valve leaflets from first and second trimester hearts. The proliferation of valve interstitial cells and ventricular valve endothelial cells (VECs) and cellular density declined from the first to the second trimester.

View Article and Find Full Text PDF