From the two metabolic processes in healthy cartilage, glycolysis has been associated with proliferation and oxidative phosphorylation (oxphos) with matrix synthesis. Recently, metabolic dysregulation was significantly correlated with cartilage degradation and osteoarthritis progression. While these findings suggest maturation predisposes cartilage to metabolic instability with consequences for tissue maintenance, these links have not been shown.
View Article and Find Full Text PDFCartilage loading is important in both structural and biological contexts, with overloading known to cause osteoarthritis (OA). Cellular metabolism, which can be evaluated through the relative measures of glycolysis and oxidative phosphorylation, is important in disease processes across tissues. Details of structural damage coupled with cellular metabolism in cartilage have not been evaluated.
View Article and Find Full Text PDFObjective: Articular cartilage undergoes biological and morphological changes throughout maturation. The prevalence of osteoarthritis in the aged population suggests that maturation predisposes cartilage to degradation and/or impaired regeneration, but this process is not fully understood. Therefore, the objective of this study was to characterize the cellular and genetic profile of cartilage, as well as biological plasticity in response to mechanical and culture time stimuli, as a function of animal maturity.
View Article and Find Full Text PDF