SARS-CoV-2-contributes to sickness and death in COVID-19 patients partly by inducing a hyper-proinflammatory immune response in the host airway. This hyper-proinflammatory state involves activation of signaling by NFκB, and unexpectedly, ENaC, the epithelial sodium channel. Post-infection inflammation may also contribute to "Long COVID"/PASC.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the worldwide COVID-19 pandemic. Animal models are extremely helpful for testing vaccines and therapeutics and for dissecting the viral and host factors that contribute to disease severity and transmissibility. Here, we report the assessment and comparison of intranasal and small particle (~3 µm) aerosol SARS-CoV-2 exposure in ferrets.
View Article and Find Full Text PDFIn February and March, 2020, environmental surface swab samples were collected from the handle of the main entry door of a major university building in Florida, as part of a pilot surveillance project screening for influenza. Samples were taken at the end of regular classroom hours, between the dates of February 1-5 and February 19-March 4, 2020. Influenza A(H1N1)pdm09 virus was isolated from the door handle on four of the 19 days sampled.
View Article and Find Full Text PDFNanomaterials (NMs) of various types, including carbon nanotubes (CNTs), can interfere with standard quantitative real-time PCR (qRT-PCR) assays, resulting in inaccurate gene expression measurements; however, the precise step in the qRT-PCR pipeline where this interference occurs has not been well described. Here, we investigated where in the process surface-oxidized multi-walled CNTs (oxMWNTs) inhibited qRT-PCR measurement of the expression of the housekeeping gene GAPDH and explored several strategies to minimize such inhibition. We determined that the interference occurred during the reverse transcription (RT) step and found that doubling reaction reagents or adding BSA successfully mitigated the inhibition.
View Article and Find Full Text PDF