Conventional approaches for the detection of antibody dependent cell-mediated cytotoxicity (ADCC) activity rely on quantification of the release of traceable compounds from target cells or flow cytometry analysis of population-wide phenomena. We report a new method for the direct imaging and quantification of ADCC of cancer cells. The proposed method using imaging flow cytometry combines the statistical power of flow cytometry with the analytical advantages of cell imaging, providing a novel and more comprehensive perspective of effector/target cell interactions during ADCC events.
View Article and Find Full Text PDFMorphological characterization by microscopy remains the gold standard for accurately identifying apoptotic cells using characteristics such as nuclear condensation, nuclear fragmentation, and membrane blebbing. However, quantitative measurement of apoptotic morphology using microscopy can be time consuming and can lack objectivity and reproducibility, making it difficult to identify subtle changes in large populations. Thus the apoptotic index of a sample is commonly measured by flow cytometry using a variety of fluorescence intensity based (photometric) assays which target hallmarks of apoptosis with secondary markers such as the TUNEL (Terminal Deoxynucleotide Transferase dUTP Nick End Labeling) assay for detection of DNA fragmentation, the Annexin V assay for surface phosphatidylserine (PS) exposure, and fluorogenic caspase substrates to detect caspase activation.
View Article and Find Full Text PDFMethane monooxygenase (MMO) enzymes catalyze the oxidation of methane to methanol in methanotrophic bacteria. Several strains of methanotrophs, including Methylococcus capsulatus (Bath), express a membrane-bound or particulate MMO (pMMO) at high copper-to-biomass ratios and a soluble MMO (sMMO) form when copper is limited. The mechanism of this "copper switch" is not understood.
View Article and Find Full Text PDF