Intact protein sequencing by tandem mass spectrometry (MS/MS), known as top-down protein sequencing, relies on efficient gas-phase fragmentation at multiple experimental conditions to achieve extensive amino acid sequence coverage. We developed the "topdownr" R-package for automated construction of multimodal (i.e.
View Article and Find Full Text PDFModern ion trap mass spectrometers are capable of collecting up to 60 tandem MS (MS/MS) scans per second, in theory providing acquisition speeds that can sample every eluting peptide precursor presented to the MS system. In practice, however, the precursor sampling capacity enabled by these ultrafast acquisition rates is often underutilized due to a host of reasons (e.g.
View Article and Find Full Text PDFAnnu Rev Anal Chem (Palo Alto Calif)
December 2016
We discuss the evolution of Orbitrap mass spectrometry (MS) from its birth in the late 1990s to its current role as one of the most prominent techniques for MS. The Orbitrap mass analyzer is the first high-performance mass analyzer that employs trapping of ions in electrostatic fields. Tight integration with the ion injection process enables the high-resolution, mass accuracy, and sensitivity that have become essential for addressing analytical needs in numerous areas of research, as well as in routine analysis.
View Article and Find Full Text PDFProteome coverage and peptide identification rates have historically advanced in line with improvements to the detection limits and acquisition rate of the mass spectrometer. For a linear ion trap/Orbitrap hybrid, the acquisition rate has been limited primarily by the duration of the ion accumulation and analysis steps. It is shown here that the spectral acquisition rate can be significantly improved through extensive parallelization of the acquisition process using a novel mass spectrometer incorporating quadrupole, Orbitrap, and linear trap analyzers.
View Article and Find Full Text PDFEpigenetic regulation of chromatin is dependent on both the histone protein isoforms and state of their post-translational modifications. The assignment of all post-translational modification sites for each individual intact protein isoform remains an experimental challenge. We present an on-line reversed phase LC tandem mass spectrometry approach for the separation of intact, unfractionated histones and a high resolution mass analyzer, the Orbitrap, with electron transfer dissociation capabilities to detect and record accurate mass values for the molecular and fragment ions observed.
View Article and Find Full Text PDFMS, with or without pre-analysis peptide fractionation, can be used to decipher the residues on proteins where oxidative modifications caused by peroxynitrite, singlet oxygen or electrophilic lipids have occurred. Peroxynitrite nitrates tyrosine and tryptophan residues on the surface of actin. Singlet oxygen, formed by the interaction of UVA light with tryptophan, can oxidize neighbouring cysteine, histidine, methionine, tyrosine and tryptophan residues.
View Article and Find Full Text PDFCreatine kinase reversibly catalyzes the transfer of the high-energy phosphoryl group from phosphocreatine to MgADP for rapid regeneration of ATP. It is hypothesized that factors which perturb creatine kinase activity, such as reactive oxygen species resulting from oxidative stress, could have a major role in the pathogenesis of diseases, particularly in the brain, where the level of ATP utilization is high. The reactive aldehyde 4-hydroxy-2-nonenal is a major secondary product of lipid peroxidation caused by oxidative stress; the levels of both free and protein-bound 4-hydroxy-2-nonenal are increased in Alzheimer's disease brain.
View Article and Find Full Text PDFThis chapter describes protocols for two-dimensional (2D) gel electrophoresis (isoelectric focusing [IEF] followed by sodium-dodecyl sulfate (SDS)-polyacrylamide gel electro-phoresis [PAGE]), staining of gels with the fluorescent dye Sypro Ruby, 2D gel image analysis, peptide mass fingerprint (PMF) analysis using matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF) mass spectrometry (MS), liquid chromatography (LC)-tandem mass spectrometry (MS/MS), Western blot analysis of protein oxidations, and mass spectrometric mapping of sites of protein oxidations. Many of these methods were used to identify proteins affected in rat brain following ingestion of grape seed extract (GSE), a dietary supplement touted for anti-oxidant activity. Although beneficial actions in cell and animal models of chronic disease have been described for GSE, it has not been shown whether specific proteins were affected, or the nature of the effects.
View Article and Find Full Text PDF