Human cytomegalovirus (CMV) is the most common infectious cause of complications post-transplantation, while a CMV vaccine for transplant recipients has yet to be licensed. Triplex, a multiantigen Modified Vaccinia Ankara (MVA)-vectored CMV vaccine candidate based on the immunodominant antigens phosphoprotein 65 (pp65) and immediate-early 1 and 2 (IE1/2), is in an advanced stage of clinical development. However, its limited genetic and expression stability restricts its potential for large-scale production.
View Article and Find Full Text PDFBackground: Although the mpox global health emergency caused by mpox virus (MPXV) clade IIb.1 has ended, mpox cases are still reported due to low vaccination coverage and waning immunity. COH04S1 is a clinically evaluated, multiantigen COVID-19 vaccine candidate built on a fully synthetic platform of the highly attenuated modified vaccinia Ankara (MVA) vector, representing the only FDA-approved smallpox/mpox vaccine JYNNEOS.
View Article and Find Full Text PDFPurpose: Our previous studies indicated that p53-reactive T cells were associated with clinical benefit in patients with advanced ovarian cancer who were treated with p53-expressing modified vaccinia Ankara (p53MVA) vaccine and gemcitabine chemotherapy. To replace chemotherapy with an approach that will enhance vaccine efficacy and antitumor immunity, we treated patients with p53MVA in combination with PD-1 checkpoint blocker, pembrolizumab. We also attempted to further characterize the activation status of T cells prior to vaccination and during treatment.
View Article and Find Full Text PDFHematopoietic cell transplantation (HCT) and chimeric antigen receptor (CAR)-T cell patients are immunocompromised, remain at high risk following SARS-CoV-2 infection, and are less likely than immunocompetent individuals to respond to vaccination. As part of the safety lead-in portion of a phase 2 clinical trial in patients post HCT/CAR-T for hematological malignancies (HM), we tested the immunogenicity of the synthetic modified vaccinia Ankara-based COVID-19 vaccine COH04S1 co-expressing spike (S) and nucleocapsid (N) antigens. Thirteen patients were vaccinated 3-12 months post HCT/CAR-T with two to four doses of COH04S1.
View Article and Find Full Text PDFTo enhance protective cytomegalovirus (CMV)-specific T cells in immunosuppressed recipients of an allogeneic hematopoietic cell transplant (HCT), we evaluated post-HCT impact of vaccinating healthy HCT donors with Triplex. Triplex is a viral vectored recombinant vaccine expressing three immunodominant CMV antigens. The vector is modified vaccinia Ankara (MVA), an attenuated, non-replicating poxvirus derived from the vaccinia virus strain Ankara.
View Article and Find Full Text PDFCell-mediated immunity may contribute to providing protection against SARS-CoV-2 and its variants of concern (VOC). We developed COH04S1, a synthetic multiantigen modified vaccinia Ankara (MVA)-based COVID-19 vaccine that stimulated potent spike (S) and nucleocapsid (N) antigen-specific humoral and cellular immunity in a phase 1 clinical trial in healthy adults. Here, we show that individuals vaccinated with COH04S1 or mRNA vaccine BNT162b2 maintain robust cross-reactive cellular immunity for six or more months post-vaccination.
View Article and Find Full Text PDFWe describe the development of a selectable, bi-cistronic subgenomic replicon for bovine viral diarrhea virus (BVDV) in Huh-7 cells, similar to that established for hepatitis C virus (HCV). The selection marker and reporter (Luc-Ubi-Neo) in the BVDV replicon was fused with the amino-terminal protease N(pro), and expression of the nonstructural proteins (NS3 to NS5B) was driven by an encephalomyocarditis virus internal ribosome entry site. This BVDV replicon allows us to compare RNA replication of these two related viruses in a similar cellular background and to identify antiviral molecules specific for HCV RNA replication.
View Article and Find Full Text PDFReplication of hepatitis C virus (HCV) RNA in virus-infected cells is believed to be catalyzed by viral replicase complexes (RCs), which may consist of various virally encoded nonstructural proteins and host factors. In this study, we characterized the RC activity of a crude membrane fraction isolated from HCV subgenomic replicon cells. The RC preparation was able to use endogenous replicon RNA as a template to synthesize both single-stranded (ss) and double-stranded (ds) RNA products.
View Article and Find Full Text PDFA direct comparison of the inhibitory effects of alpha, beta, and gamma interferons (IFNs) on replication of a hepatitis C virus subgenomic replicon in a hepatoma cell line revealed similarities in antiviral potency. However, alternate IFN-induced antiviral mechanisms were suggested following observations of striking differences between IFN-gamma and IFN-alpha/beta with respect to strength and durability of the antiviral response and the magnitude and pattern of IFN-mediated gene expression.
View Article and Find Full Text PDFHepatitis C virus (HCV) nonstructural protein 5B (NS5B) is an RNA-dependent RNA polymerase (RdRp) essential for virus replication. Several consensus sequence motifs have been identified in NS5B, some of which have been shown to be critical for its enzymatic activity. A unique beta-hairpin structure located between amino acids 443 and 454 in the thumb subdomain has also been shown to play an important role in ensuring terminal initiation of RNA synthesis in vitro.
View Article and Find Full Text PDF