Proc Natl Acad Sci U S A
November 2008
Datasets describing the health status of individuals are important for medical research but must be used cautiously to protect patient privacy. For patient data containing geographical identifiers, the conventional solution is to aggregate the data by large areas. This method often preserves privacy but suffers from substantial information loss, which degrades the quality of subsequent disease mapping or cluster detection studies.
View Article and Find Full Text PDFBackground: Knowledge of the geographical locations of individuals is fundamental to the practice of spatial epidemiology. One approach to preserving the privacy of individual-level addresses in a data set is to de-identify the data using a non-deterministic blurring algorithm that shifts the geocoded values. We investigate a vulnerability in this approach which enables an adversary to re-identify individuals using multiple anonymized versions of the original data set.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
June 2007
Background: For real time surveillance, detection of abnormal disease patterns is based on a difference between patterns observed, and those predicted by models of historical data. The usefulness of outbreak detection strategies depends on their specificity; the false alarm rate affects the interpretation of alarms.
Results: We evaluate the specificity of five traditional models: autoregressive, Serfling, trimmed seasonal, wavelet-based, and generalized linear.
Existing disease cluster detection methods cannot detect clusters of all shapes and sizes or identify highly irregular sets that overestimate the true extent of the cluster. We introduce a graph-theoretical method for detecting arbitrarily shaped clusters based on the Euclidean minimum spanning tree of cartogram-transformed case locations, which overcomes these shortcomings. The method is illustrated by using several clusters, including historical data sets from West Nile virus and inhalational anthrax outbreaks.
View Article and Find Full Text PDF