Publications by authors named "Shannon Buckley"

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have unique characteristics where they can both contribute to all three germ layers in vivo and self-renewal indefinitely in vitro. Post-translational modifications of proteins, particularly by the ubiquitin proteasome system (UPS), control cell pluripotency, self-renewal, and differentiation. A significant number of UPS members (mainly ubiquitin ligases) regulate pluripotency and influence ESC differentiation with key elements of the ESC pluripotency network (including the "master" regulators NANOG and OCT4) being controlled by ubiquitination.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a heterogeneous disease characterized by clonal expansion of myeloid blasts in the bone marrow (BM). Despite advances in therapy, the prognosis for AML patients remains poor, and there is a need to identify novel molecular pathways regulating tumor cell survival and proliferation. F-box ubiquitin E3 ligase, FBXO21, has low expression in AML, but expression correlates with survival in AML patients and patients with higher expression have poorer outcomes.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how the ubiquitin proteasome system (UPS) influences hematopoietic stem and progenitor cell (HSPC) fate decisions, specifically focusing on the role of the E3 ligase FBXO21.
  • By creating both small hairpin RNAs (shRNAs) and a conditional knockout (cKO) mouse model for FBXO21, researchers found that reducing FBXO21 expression in HSPCs impaired their ability to form colonies and led to premature differentiation.
  • The findings revealed that FBXO21 is crucial for maintaining HSPC function and survival, particularly under stress, and suggests it's involved in regulating cytokine signaling through pathways affected by ERK.
View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a devastating cancer affecting the hematopoietic system. Previous research has relied on RNA sequencing and microarray techniques to study the downstream effects of genomic alterations. While these studies have proven efficacious, they fail to capture the changes that occur at the proteomic level.

View Article and Find Full Text PDF

B-cell non-Hodgkin lymphoma (B-NHL) encompasses multiple clinically and phenotypically distinct subtypes of malignancy with unique molecular etiologies. Common subtypes of B-NHL, such as diffuse large B-cell lymphoma, have been comprehensively interrogated at the genomic level, but rarer subtypes, such as mantle cell lymphoma, remain less extensively characterized. Furthermore, multiple B-NHL subtypes have thus far not been comprehensively compared using the same methodology to identify conserved or subtype-specific patterns of genomic alterations.

View Article and Find Full Text PDF

RNA polymerase II subunit A Carboxy-Terminal Domain Phosphatase 1 (CTDP1), a member of the haloacid dehalogenase superfamily phosphatases, has a defined role in transcriptional regulation, but emerging evidence suggests an expanded functional repertoire in the cell cycle and DNA damage response. In humans, a splice site mutation in gives rise to the rare Congenital Cataracts Facial Dysmorphism and Neuropathy syndrome, and recent evidence from our lab indicates CTDP1 is required for breast cancer growth and proliferation. To explore the physiological function of CTDP1 in a mammalian system, we generated a conditional knockout mouse model by insertion of sites upstream of exon 3 and downstream of exon 4.

View Article and Find Full Text PDF

Hematopoiesis is responsible for numerous functions, ranging from oxygen transportation to host defense, to injury repair. This process of hematopoiesis is maintained throughout life by hematopoietic stem cells and requires a controlled balance between self-renewal, differentiation, and quiescence. Disrupting this balance can result in hematopoietic malignancies, including anemia, immune deficiency, leukemia, and lymphoma.

View Article and Find Full Text PDF

Coordination of a number of molecular mechanisms including transcription, alternative splicing, and class switch recombination are required to facilitate development, activation, and survival of B cells. Disruption of these pathways can result in malignant transformation. Recently, next-generation sequencing has identified a number of novel mutations in mantle cell lymphoma (MCL) patients including mutations in the ubiquitin E3 ligase UBR5.

View Article and Find Full Text PDF

The hematopoietic system is maintained throughout life by stem cells that are capable of differentiating into all hematopoietic lineages. An intimate balance between self-renewal, differentiation, and quiescence is required to maintain hematopoiesis and disruption of this balance can result in malignant transformation. , the substrate recognition component from the SCF E3 ubiquitin ligase family, is downregulated in patients with acute myeloid leukemia (AML) compared to healthy bone marrow, and this downregulation is particularly evident in patients with inv(16) AML.

View Article and Find Full Text PDF

The goal of this study was to compare regional brain atrophy patterns in cognitively unimpaired (CU) older adults with and without brain accumulation of amyloid-β (Aβ) to elucidate contributions of Aβ, age, and other variables to atrophy rates. In 80 CU participants from the Alzheimer's Disease Neuroimaging Initiative, we determined effects of Aβ and age on longitudinal, regional atrophy rates, while accounting for confounding variables including sex, APOE ε4 genotype, white matter lesions, and cerebrospinal fluid total and phosphorylated tau levels. We not only found overlapping patterns of atrophy in Aβ+ versus Aβ- participants but also identified regions where atrophy pattern differed between the 2 groups.

View Article and Find Full Text PDF

Background: Conditional knockout mice and transgenic mice expressing recombinases, reporters, and inducible transcriptional activators are key for many genetic studies and comprise over 90% of mouse models created. Conditional knockout mice are generated using labor-intensive methods of homologous recombination in embryonic stem cells and are available for only ~25% of all mouse genes. Transgenic mice generated by random genomic insertion approaches pose problems of unreliable expression, and thus there is a need for targeted-insertion models.

View Article and Find Full Text PDF

Pluripotent embryonic stem cells (ESCs) self-renew or differentiate into all tissues of the developing embryo and cell-specification factors are necessary to balance gene expression. Here we delineate the function of the PHD-finger protein 5a (Phf5a) in ESC self-renewal and ascribe its role in regulating pluripotency, cellular reprogramming and myoblast specification. We demonstrate that Phf5a is essential for maintaining pluripotency, since depleted ESCs exhibit hallmarks of differentiation.

View Article and Find Full Text PDF

Little is known on post-transcriptional regulation of adult and embryonic stem cell maintenance and differentiation. Here we characterize the role of Ddb1, a component of the CUL4-DDB1 ubiquitin ligase complex. Ddb1 is highly expressed in multipotent hematopoietic progenitors and its deletion leads to abrogation of both adult and fetal hematopoiesis, targeting specifically transiently amplifying progenitor subsets.

View Article and Find Full Text PDF

Background: This study reports the baseline characteristics of diffusion tensor imaging data in Parkinson's disease (PD) patients and healthy control subjects from the Parkinson's Progression Markers Initiative. The main goals were to replicate previous findings of abnormal diffusion imaging values from the substantia nigra. in a large multicenter cohort and determine whether nigral diffusion alterations are associated with dopamine deficits.

View Article and Find Full Text PDF

Unlabelled: Persistent firing of entorhinal cortex (EC) pyramidal neurons is a key component of working and spatial memory. We report here that a pro-brain-derived neurotrophic factor (proBDNF)-dependent p75NTR signaling pathway plays a major role in excitability and persistent activity of pyramidal neurons in layer V of the EC. Using electrophysiological recordings, we show that proBDNF suppresses persistent firing in entorhinal slices from wild-type mice but not from p75NTR-null mice.

View Article and Find Full Text PDF

Background: We previously found evidence of reduced gray and white matter volume in Gulf War (GW) veterans with predicted low-level exposure to sarin (GB) and cyclosarin (GF). Because loss of white matter tissue integrity has been linked to both gray and white matter atrophy, the current study sought to test the hypothesis that GW veterans with predicted GB/GF exposure have evidence of disrupted white matter microstructural integrity.

Methods: Measures of fractional anisotropy and directional (i.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is histopathologically characterized by the loss of dopamine neurons in the substantia nigra pars compacta. The depletion of these neurons is thought to reduce the dopaminergic function of the nigrostriatal pathway, as well as the neural fibers that link the substantia nigra to the striatum (putamen and caudate), causing a dysregulation in striatal activity that ultimately leads to lack of movement control. Based on diffusion tensor imaging, visualizing this pathway and measuring alterations of the fiber integrity remain challenging.

View Article and Find Full Text PDF

The medial temporal lobe is implicated as a key brain region involved in the pathogenesis of Alzheimer's disease (AD) and consequent memory loss. Tau tangle aggregation in this region may develop concurrently with cortical Aβ deposition in preclinical AD, but the pathological relationship between tau and Aβ remains unclear. We used task-free fMRI with a focus on the medical temporal lobe, together with Aβ PET imaging, in cognitively normal elderly human participants.

View Article and Find Full Text PDF

Background: More than 100,000 US troops were potentially exposed to chemical warfare agents sarin (GB) and cyclosarin (GF) when an ammunition dump at Khamisiyah, Iraq was destroyed during the 1991 Gulf War (GW). We previously reported reduced hippocampal volume in GW veterans with suspected GB/GF exposure relative to matched, unexposed GW veterans estimated from 1.5T magnetic resonance images (MRI).

View Article and Find Full Text PDF

Posttraumatic stress disorder (PTSD) is associated with smaller volumes of the hippocampus, as has been demonstrated by meta-analyses. Proposed mechanistic relationships are reviewed briefly, including the hypothesis that sleep disturbances mediate the effects of PTSD on hippocampal volume. Evidence for this includes findings that insomnia and restricted sleep are associated with changes in hippocampal cell regulation and impairments in cognition.

View Article and Find Full Text PDF

Objective: To characterize and compare measurements of the posterior cingulate glucose metabolism, the hippocampal glucose metabolism, and hippocampal volume so as to distinguish cognitively normal, late-middle-aged persons with 2, 1, or 0 copies of the apolipoprotein E (APOE) ε4 allele, reflecting 3 levels of risk for late-onset Alzheimer disease.

Design: Cross-sectional comparison of measurements of cerebral glucose metabolism using 18F-fluorodeoxyglucose positron emission tomography and measurements of brain volume using magnetic resonance imaging in cognitively normal ε4 homozygotes, ε4 heterozygotes, and noncarriers.

Setting: Academic medical center.

View Article and Find Full Text PDF

The molecular mechanisms regulating leukemia-initiating cell (LIC) function are of important clinical significance. We use chronic myelogenous leukemia (CML) as a model of LIC-dependent malignancy and identify the interaction between the ubiquitin ligase Fbw7 and its substrate c-Myc as a regulator of LIC homeostasis. Deletion of Fbw7 leads to c-Myc overexpression, p53-dependent LIC-specific apoptosis, and the eventual inhibition of tumor progression.

View Article and Find Full Text PDF

Directional migration determines hematopoietic stem/progenitor cell (HSPC) homing, which depends upon the interaction between the chemokine CXCL12 and its receptor CXCR4. CD26 is a widely expressed membrane-bound ectopeptidase that cleaves CXCL12 thereby depleting its chemokine activity. We identified tissue-factor pathway inhibitor (TFPI) as a biological inhibitor of CD26 in murine and human HSPCs.

View Article and Find Full Text PDF

Unlabelled: Although it is well established that BMP4 plays an important role in the development of hematopoietic system, it is less well understood whether BMP4 affects adult hematopoiesis and how. Here, we describe a novel mechanism by which BMP4 regulates homing of murine as well as human hematopoietic stem/progenitor cells (HSPCs). BMP4 treatment of murine BM derived c-kitLin-Sca-1 (KLS) and CD150CD48-KLS cells for up to 5 days in vitro prevented the culture-induced loss of Integrin-α4 (ITGA4) expression as well as homing.

View Article and Find Full Text PDF

Although transcriptional regulation of stem cell pluripotency and differentiation has been extensively studied, only a small number of studies have addressed the roles for posttranslational modifications in these processes. A key mechanism of posttranslational modification is ubiquitination by the ubiquitin-proteasome system (UPS). Here, using shotgun proteomics, we map the ubiquitinated protein landscape during embryonic stem cell (ESC) differentiation and induced pluripotency.

View Article and Find Full Text PDF