Lipoxins are an important class of lipid mediators that induce the resolution of inflammation and arise from transcellular exchange of arachidonic acid (AA)-derived lipoxygenase products. Human epithelial 15-lipoxygenase-2 (h15-LOX-2), the major lipoxygenase in macrophages, has exhibited strict regiospecificity, catalyzing only the hydroperoxidation of carbon 15 of AA. To determine the catalytic potential of h15-LOX-2 in transcellular synthesis events, we reacted it with the three lipoxygenase-derived monohydroperoxy-eicosatetraenoic acids (HPETE) in humans: 5-HPETE, 12-HPETE, and 15-HPETE.
View Article and Find Full Text PDF5-Lipoxygenase (5-LOX) reacts with arachidonic acid (AA) to first generate 5(S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic acid [5(S)-HpETE] and then an epoxide from 5(S)-HpETE to form leukotriene A4, from a single polyunsaturated fatty acid. This work investigates the kinetic mechanism of these two processes and the role of ATP in their activation. Specifically, it was determined that epoxidation of 5(S)-HpETE (dehydration of the hydroperoxide) has a rate of substrate capture (Vmax/Km) significantly lower than that of AA hydroperoxidation (oxidation of AA to form the hydroperoxide); however, hyperbolic kinetic parameters for ATP activation indicate a similar activation for AA and 5(S)-HpETE.
View Article and Find Full Text PDF