Publications by authors named "Shannon B Olsson"

Host shifts are considered a key generator of insect biodiversity. For insects, adaptation to new host plants often requires changes in larval/pupal development and adult behavioural preference toward new hosts. Neurochemicals play key roles in both development and behaviour and therefore provide a potential source for such synchronization.

View Article and Find Full Text PDF

Terpene synthases (TPSs) have diverse biological functions in plants. Though the roles of TPSs in herbivore defense are well established in many plant species, their role in bacterial defense has been scarce and is emerging. Through functional genomics, here we report the in planta role of potato (Solanum tuberosum) terpene synthase (StTPS18) in bacterial defense.

View Article and Find Full Text PDF
Article Synopsis
  • - Changes in behavior can lead to quick evolution and the formation of new species, but the reasons behind these behavioral changes are not well understood.
  • - The tephritid fruit fly illustrates this concept, having recently switched from mating on hawthorn to apple trees, which affects its odor preferences and leads to reproductive isolation.
  • - Research shows that this shift is linked to alterations in the brain's sensory processing for recognizing fruit odors, suggesting that similar neural changes in other species could drive behavioral evolution and biodiversity.
View Article and Find Full Text PDF

In a preregistered, cross-sectional study, we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n = 4148) or negative (C19-; n = 546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery.

View Article and Find Full Text PDF

Antagonism of plant pathogenic fungi by endophytic fungi is a well-known phenomenon. In plate assays, the antagonism could be due to mycoparasitism, competition for space or antibiosis, involving a chemical diffusate, or a volatile organic compound (VOC). In this study, we demonstrate that besides mycoparasitism, VOCs play a major role in antagonism of pathogenic fungi by four endophytic fungi belonging to the genus Trichoderma.

View Article and Find Full Text PDF

Insects perform a wide array of intricate behaviors over large spatial and temporal scales in complex natural environments. A mechanistic understanding of insect cognition has direct implications on how brains integrate multimodal information and can inspire bio-based solutions for autonomous robots. Virtual Reality (VR) offers an opportunity assess insect neuroethology while presenting complex, yet controlled, stimuli.

View Article and Find Full Text PDF

Terpene synthases (TPSs) produce a variety of terpenoids that play numerous functional roles in primary and secondary metabolism, as well as in ecological interactions. Here, we report the functional characterization of an inducible potato TPS gene encoding bulnesol/elemol synthase (StBUS/ELS). The expression of StBUS/ELS in potato leaves was significantly induced in response to both bacterial (Pseudomonas syringae) and fungal (Alternaria solani) infection as well as methyl jasmonate treatment, indicating its role in defense.

View Article and Find Full Text PDF

While the impact of air pollution on human health is well studied, mechanistic impacts of air pollution on wild systems, including those providing essential ecosystem services, are largely unknown, but directly impact our health and well-being. India is the world's largest fruit producer, second most populous country, and contains 9 of the world's 10 most polluted cities. Here, we sampled Giant Asian honey bees, , at locations with varying air pollution levels in Bangalore, India.

View Article and Find Full Text PDF

Background: COVID-19 has heterogeneous manifestations, though one of the most common symptoms is a sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of COVID-19.

Methods: This preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness.

View Article and Find Full Text PDF

Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19.

View Article and Find Full Text PDF

The exemplary search capabilities of flying insects have established them as one of the most diverse taxa on Earth. However, we still lack the fundamental ability to quantify, represent, and predict trajectories under natural contexts to understand search and its applications. For example, flying insects have evolved in complex multimodal three-dimensional (3D) environments, but we do not yet understand which features of the natural world are used to locate distant objects.

View Article and Find Full Text PDF

Chemical signaling is ubiquitous and employs a variety of receptor types to detect the cacophony of molecules relevant for each living organism. Insects, our most diverse taxon, have evolved unique olfactory receptors with as little as 10% sequence identity between receptor types. We have identified a promiscuous volatile, 2-methyltetrahydro-3-furanone (coffee furanone), that elicits chemosensory and behavioral activity across multiple insect orders and receptors.

View Article and Find Full Text PDF

With more than 80% of flowering plant species specialized for animal pollination, understanding how wild pollinators utilize resources across environments can encourage efficient planting and maintenance strategies to maximize pollination and establish resilience in the face of environmental change. A fundamental question is how generalist pollinators recognize "flower objects" in vastly different ecologies and environments. On one hand, pollinators could employ a specific set of floral cues regardless of environment.

View Article and Find Full Text PDF

A mixture of behaviorally active volatiles was identified from the fruit of snowberry, Symphoricarpos albus laevigatus, for Rhagoletis zephyria flies reared from snowberry fruit. A nine-component blend containing 3-methylbutan-1-ol (3%), dimethyl trisulfide (1%), 1-octen-3-ol (40%), myrcene (8%), nonanal (9%), linalool (13%), (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT, 6%), decanal (15%), and β-caryophyllene (5%) was identified that gave consistent electroantennogram activity and was behaviorally active in flight tunnel tests. In other flight tunnel assays, snowberry flies from two sites in Washington state, USA, displayed significantly greater levels of upwind oriented flight to sources with the snowberry volatile blend compared with previously identified volatile blends from domestic apple (Malus domestica) and downy hawthorn (Crataegus mollis) fruit from the eastern USA, and domestic apple, black hawthorn (C.

View Article and Find Full Text PDF

Behavioural changes in habitat or mate choice can trigger population divergence, leading to speciation. However, little is known about the neurological bases for such changes. Rhagoletis pomonella (Diptera: Tephritidae) is a model for ecological speciation via host plant shifts.

View Article and Find Full Text PDF

Flying insects are well known for airborne odour tracking and have evolved diverse chemoreceptors. While ionotropic receptors (IRs) are found across protostomes, insect odorant receptors (ORs) have only been identified in winged insects. We therefore hypothesized that the unique signal transduction of ORs offers an advantage for odour localization in flight.

View Article and Find Full Text PDF

The hawkmoth, Manduca sexta, has been a keystone system for developmental, neurobiological, and ecological studies for several decades. Because many of its behaviors are driven by olfactory cues, a thorough understanding of the Manduca olfactory system is essential to studying its biology. With the aim of functionally characterizing single antennal olfactory sensory neurons (OSNs) and determining their detailed topographic location, we performed systematic single-sensillum recordings on 4 morphological types of olfactory sensilla: trichoid-A and -B and basiconic-A and -B.

View Article and Find Full Text PDF

The discrimination of complex sensory stimuli in a noisy environment is an immense computational task. Sensory systems often encode stimulus features in a spatiotemporal fashion through the complex firing patterns of individual neurons. To identify these temporal features, we have developed an analysis that allows the comparison of statistically significant features of spike trains localized over multiple scales of time-frequency resolution.

View Article and Find Full Text PDF

Electrophysiology is an invaluable technique to quickly and quantitatively assess the response of the olfactory system to odor stimuli. For measuring the response of the insect antenna, two basic techniques exist, electroantennography and single sensillum recording. Here, we describe the general practice of both methods in terms of equipment used, insect preparation, recording technique, and basic analysis.

View Article and Find Full Text PDF

Insects possess one of the most exquisitely sensitive olfactory systems in the animal kingdom, consisting of three different types of chemosensory receptors: ionotropic glutamate-like receptors (IRs), gustatory receptors (GRs) and odorant receptors (ORs). Both insect ORs and IRs are ligand-gated ion channels, but ORs possess a unique configuration composed of an odorant-specific protein OrX and a ubiquitous coreceptor (Orco). In addition, these two ionotropic receptors confer different tuning properties for the neurons in which they are expressed.

View Article and Find Full Text PDF

Insect olfactory sensory neurons (OSN) express a diverse array of receptors from different protein families, i.e. ionotropic receptors (IR), gustatory receptors (GR) and odorant receptors (OR).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session77v67h1nnrkmi998fe4lj58pq7u02269): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once