Publications by authors named "Shannon B Beltz"

Powdery mildews (PMs) are important plant pathogens causing widespread damage. Here, we report the first draft genome of , the causative agent of PM of flowering dogwood, . The assembled genome was 63.

View Article and Find Full Text PDF

Background: Aspergillus arachidicola is an aflatoxigenic fungal species, first isolated from the leaves of a wild peanut species native to Argentina. It has since been reported in maize, Brazil nut and human sputum samples. This aflatoxigenic species is capable of secreting both B and G aflatoxins, similar to A.

View Article and Find Full Text PDF

Aspergillus bombycis was first isolated from silkworm frass in Japan. It has been reportedly misidentified as A. nomius due to their macro-morphological and chemotype similarities.

View Article and Find Full Text PDF

Aspergillus ochraceoroseus and Aspergillus rambellii were isolated from soil detritus in Taï National Park, Ivory Coast, Africa. The Type strain for each species happens to be the only representative ever sampled. Both species secrete copious amounts of aflatoxin B1 and sterigmatocystin, because each of their genomes contains clustered genes for biosynthesis of these mycotoxins.

View Article and Find Full Text PDF

Background: Aspergillus nomius is an opportunistic pathogen and one of the three most important producers of aflatoxins in section Flavi. This fungus has been reported to contaminate agricultural commodities, but it has also been sampled in non-agricultural areas so the host range is not well known. Having a similar mycotoxin profile as A.

View Article and Find Full Text PDF

Racemic gossypol and its related derivatives gossypolone and apogossypolone demonstrated significant growth inhibition against a diverse collection of filamentous fungi that included Aspergillus flavus, Aspergillus parasiticus, Aspergillus alliaceus, Aspergillus fumigatus, Fusarium graminearum, Fusarium moniliforme, Penicillium chrysogenum, Penicillium corylophilum, and Stachybotrys atra. The compounds were tested in a Czapek agar medium at a concentration of 100 μg/mL. Racemic gossypol and apogossypolone inhibited growth by up to 95%, whereas gossypolone effected 100% growth inhibition in all fungal isolates tested except A.

View Article and Find Full Text PDF

There is a large and rapidly growing market for fresh-cut fruit. Microbial volatile organic compounds indicate the presence of fungal or bacterial contamination in fruit. In order to determine whether microbial volatile organic compounds can be used to detect contamination before fruit becomes unmarketable, pieces of cantaloupe, apple, pineapple, and orange were inoculated with a variety of fungal species, incubated at 25 degrees C, then sealed in glass vials.

View Article and Find Full Text PDF