Publications by authors named "Shanna Yue"

Objective: To determine if blood biomarkers measured at delivery and shortly after birth can identify growth-restricted infants at risk for developing severe brain injury.

Study Design: In a cohort of very low birth weight neonates, fetal growth restricted (FGR) (birth weight <10%) were compared to non-FGR neonates, and within the FGR group those with brain injury were compared to those without. Biomarkers were measured in cord blood at delivery, and daily for the 1st 5 days of life.

View Article and Find Full Text PDF

Purpose: Impaired function of gonadotropin-releasing hormone (GnRH) neurons can cause a phenotypic spectrum ranging from delayed puberty to isolated hypogonadotropic hypogonadism (IHH). We sought to identify a new genetic etiology for these conditions.

Methods: Exome sequencing was performed in an extended family with autosomal dominant, markedly delayed puberty.

View Article and Find Full Text PDF

Background: Midkine (MDK), one of the heparin-binding growth factors, is highly expressed in multiple organs during embryogenesis. Plasma concentrations have been reported to be elevated in patients with a variety of malignancies, in adults with obesity, and in children with short stature, diabetes, and obesity. However, the concentrations in healthy children and their relationships to age, nutrition, and linear growth have not been well studied.

View Article and Find Full Text PDF

Longitudinal bone growth is driven by endochondral ossification, a process in which cartilage tissue is generated by growth plate chondrocytes and then remodeled into bone by osteoblasts. In the postnatal growth plate, as hypertrophic chondrocytes approach the chondro-osseous junction, they may undergo apoptosis, or directly transdifferentiate into osteoblasts. The molecular mechanisms governing this switch in cell lineage are poorly understood.

View Article and Find Full Text PDF

Linear growth occurs at the growth plate. Therefore, genetic defects that interfere with the normal function of the growth plate can cause linear growth disorders. Many genetic causes of growth disorders have already been identified in humans.

View Article and Find Full Text PDF

In many children with short stature, the etiology of the decreased linear growth remains unknown. We sought to identify the underlying genetic etiology in a patient with short stature, irregular growth plates of the proximal phalanges, developmental delay, and mildly dysmorphic facial features. Exome sequencing identified a de novo, heterozygous, nonsense mutation (c.

View Article and Find Full Text PDF

Bones at different anatomical locations vary dramatically in size. For example, human femurs are 20-fold longer than the phalanges in the fingers and toes. The mechanisms responsible for these size differences are poorly understood.

View Article and Find Full Text PDF

Growth plate chondrocytes undergo sequential differentiation to form the resting zone, the proliferative zone (PZ), and the hypertrophic zone (HZ). The important role of microRNAs (miRNAs) in the growth plate was previously revealed by cartilage-specific ablation of Dicer, an enzyme essential for biogenesis of many miRNAs. To identify specific miRNAs that regulate differentiation of PZ chondrocytes to HZ chondrocytes, we microdissected individual growth plate zones from juvenile rats and performed miRNA profiling using a solution hybridization method and miRNA sequencing.

View Article and Find Full Text PDF

Context: Weaver syndrome is characterized by tall stature, advanced bone age, characteristic facies, and variable intellectual disability. It is caused by heterozygous mutations in enhancer of zeste homolog 2 (EZH2), a histone methyltransferase responsible for histone H3 at lysine 27 (H3K27) trimethylation. However, no early truncating mutations have been identified, suggesting that null mutations do not cause Weaver syndrome.

View Article and Find Full Text PDF

Articular and growth plate cartilage both arise from condensations of mesenchymal cells, but ultimately develop important histological and functional differences. Each is composed of three layers-the superficial, mid and deep zones of articular cartilage and the resting, proliferative and hypertrophic zones of growth plate cartilage. The bone morphogenetic protein (BMP) system plays an important role in cartilage development.

View Article and Find Full Text PDF