Adenosine monophosphate-activated protein kinase (AMPK) regulates multiple signaling pathways involved in glucose and lipid metabolism in response to changes in hormonal and nutrient status. Cell culture studies have shown that AMPK phosphorylation and inhibition of the rate-limiting enzyme in the mevalonate pathway 3-hydroxy-3-methylglutaryl (HMG) coenzyme A (CoA) reductase (HMGCR) at serine-871 (Ser871; human HMGCR Ser872) suppresses cholesterol synthesis. In order to evaluate the role of AMPK-HMGCR signaling we generated mice with a Ser871-alanine (Ala) knock-in mutation (HMGCR KI).
View Article and Find Full Text PDFThe adenosine monophosphate (AMP)-activated protein kinase (AMPK) regulates whole-body and cellular energy balance in response to energy demand and supply. AMPK is an αβγ heterotrimer activated by decreasing concentrations of adenosine triphosphate (ATP) and increasing AMP concentrations. AMPK activation depends on phosphorylation of the α catalytic subunit on threonine-172 (Thr(172)) by kinases LKB1 or CaMKKβ, and this is promoted by AMP binding to the γ subunit.
View Article and Find Full Text PDFSince AMP-activated protein kinase (AMPK) plays important roles in modulating metabolism in response to diet and exercise, both of which influence bone mass, we examined the influence of AMPK on bone mass in mice. AMPK is an alphabetagamma heterotrimer where the beta subunit anchors the alpha catalytic and gamma regulatory subunits. Germline deletion of either AMPK beta1 or beta2 subunit isoforms resulted in reduced trabecular bone density and mass, but without effects on osteoclast (OC) or osteoblast (OB) numbers, as compared to wild-type littermate controls.
View Article and Find Full Text PDFLeishmania spp. are human pathogens that utilize a novel beta-1,2-mannan as their major carbohydrate reserve material. We describe a new approach that combines traditional substrate-modification methods and "click chemistry" to assemble a library of modified substrates that were used to qualitatively define the substrate tolerance of the Leishmania beta-1,2-mannosyltransferases responsible for beta-1,2-mannan biosynthesis.
View Article and Find Full Text PDF