A bacterial ghost cell is an empty cell envelope of bacteria lacking cytoplasmic content. Bacterial ghost cells (BGs) can be used for various applications such as vaccines, adjuvants, and drug delivery systems. Since BGs offer many advantages over classically prepared vaccines, developing novel methods for the preparation of high-quality BGs remains to be an interesting field of study by various research groups.
View Article and Find Full Text PDFBackground And Purpose: Many sectors use nanoparticles and dispose of them in the aquatic environment without deciding the fate of these particles.
Experimental Approach: To identify a benign species of nanoparticles which can cause minimum harm to the aquatic environment, a comparative study was done with chemically synthesized silver nanoparticles (AgNPs) and green tea mediated synthesis (GT/AgNP) in both in vitro using human alveolar cancer cell line (A549) and normal cell line (L132), and in in vivo with zebrafish embryos.
Key Results: The in vitro studies revealed that GT/AgNPs were less toxic to normal cells than cancer cells.
A wound is an injury to the skin or damage to the body tissue. The healing process differs between various kinds of wounds. Treatment of hard-to-heal (chronic) wounds becomes challenging for healthcare practitioners, especially if patients have underlying health complications such as diabetes.
View Article and Find Full Text PDFEscherichia coli Nissle 1917 (EcN) is one of the probiotics that has drawn more attention from researchers in recent days as it extends many host beneficial effects. EcN is being used as a treatment regimen especially for gastrointestinal disorders for more than 100 years. Apart from its clinical applications in its original form, EcN is being genetically engineered to meet the therapeutic requirements which ultimately led to the gradual transformation of EcN from being a mere food supplement to a complex therapeutic agent.
View Article and Find Full Text PDFProtein Pept Lett
March 2023
Background: Polypeptides that comprise less than 100 amino acids (50 amino acids in some cases) are referred to as small proteins (SPs), however, as of date, there is no strict definition. In contrast to the small polypeptides that arise due to proteolytic activity or abrupt protein synthesis, SPs are coded by small open reading frames (sORFs) and are conventionally synthesized by ribosomes.
Purpose Of The Review: Although proteins that contain more than 100 amino acids have been studied exquisitely, studies on small proteins have been largely ignored, basically due to the unsuccessful detection of these SPs by traditional methodologies/techniques.
Rifampicin (RIF) is still a first line of antibiotic in the treatment of bacterial diseases, in particular the Mycobacterial infections. The antimicrobial activity of RIF is attributed to its ability to inhibit transcription by binding to the β subunit of bacterial RNA polymerase (encoded by rpoB). Continued use of this drug resulted in the emergence of RIF resistant rpoB mutations in a high frequency that compels the use of RIF almost exclusively in drug combinations.
View Article and Find Full Text PDFThe data presented in this article shows the microarray based transcriptome profiles of ∆ and ∆ strains of . The mutation namely, was isolated spontaneously in the background of ∆ strain (over-produces colanic acid capsular polysaccharide) as a suppressor for over-production of colanic acid capsular polysaccharide (Meenakshi and Munavar, 2015) [1]. The strains were grown in LB medium at 30 °C overnight in duplicates.
View Article and Find Full Text PDFIt is well established that in , the histone-like nucleoid structuring (H-NS) protein also functions as negative regulator of transcription. However, the exact mode of regulation of transcription by H-NS has not been studied extensively. Here, we report the multicopy effect of dominant-negative alleles on the transcription of based on expression of transcriptional fusion in ∆, ∆, ∆ and strains.
View Article and Find Full Text PDFAnalyses of mutations in rpoB subunit of Escherichia coli that lead to resistance to rifampicin have been invaluable in providing insight into events during transcription continue to be discovered. Earlier we reported that rpoB12 suppresses over-expression of cps genes in Δlon mutant of E. coli, by interfering with the transcription of rcsA.
View Article and Find Full Text PDFAnalyses of mutations in genes coding for subunits of RNA polymerase always throw more light on the intricate events that regulate the expression of gene(s). Lon protease of Escherichia coli is implicated in the turnover of RcsA (positive regulator of genes involved in capsular polysaccharide synthesis) and SulA (cell division inhibitor induced upon DNA damage). Failure to degrade RcsA and SulA makes lon mutant cells to overproduce capsular polysaccharides and to become sensitive to DNA damaging agents.
View Article and Find Full Text PDFVery recently, we have reported about an unconventional mode of elicitation of Mitomycin C (MMC) specific resistance in lexA3 (SOS repair deficient) mutants due to a combination of Rif-Nal mutations (rpoB87-gyrA87). We have clearly shown that UvrB is mandatory for this unconventional MMC resistance in rpoB87-gyrA87-lexA3 strains and uvrB is expressed more even without DNA damage induction from its LexA dependent promoter despite the uncleavable LexA3 repressor. The rpoB87 allele is same as the rpoB3595 which is known to give rise to a fast moving RNA Polymerase and gyrA87 is a hitherto unreported Nal(R) allele.
View Article and Find Full Text PDF