Publications by authors named "Shanmuganandam Karthik"

Background: MicroRNAs (miRNAs) are increasingly being recognized as being involved in cancer development and progression in gliomas.

Methods: Using a model cell system developed in our lab to study glioma progression comprising human neuroglial culture (HNGC)-1 and HNGC-2 cells, we report here that miR-145 is one of the miRNAs significantly downregulated during malignant transformation in glioblastoma multiforme (GBM). In a study using tumor samples derived from various glioma grades, we show that expression of miR-145 is decreased in a graded manner, with GBM patients showing lowest expression relative to lower-grade gliomas (P < .

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common and highly aggressive type of primary brain tumor. Tumor-associated macrophages (TAMs) secrete TNF-α that activates important survival pathways including Akt (PKB)/mTOR network. The mammalian target of rapamycin (mTOR) network functions downstream of PI3K/Akt pathway to regulate cell growth, proliferation and survival.

View Article and Find Full Text PDF

The role of epigenetics and significance of aberrant gene regulation in etiology of cancer is a well-established phenomenon. The hallmark of cancer epigenetics is aberrant DNA methylation consisting of global hypomethylation and regional hypermethylation of tumor suppressor genes (TSGs) by DNA methyltransferases (DNMTs). In mammals, DNA methylation is catalyzed by DNMTs encoded by DNMT1, DNMT3A, and DNMT3B.

View Article and Find Full Text PDF