Polyesters from furandicarboxylic acid derivatives, i.e., dimethyl 2,5-furandicarboxylate (2,5-DMFDCA) and 2,4-DMFDCA, show interesting properties among bio-based polymers.
View Article and Find Full Text PDFThe use of plastics in a wide range of applications has grown substantially over recent decades, resulting in enormous growth in production volumes to meet demand. Though a wide range of biomass-derived chemicals and materials are available on the market, the production volumes of such renewable alternatives are currently not sufficient to replace their fossil-based analogues due to various factors, in particular cost-effectiveness. Hence, the majority of plastics are still industrially produced from fossil-based feedstocks.
View Article and Find Full Text PDFHigh-molecular-weight poly(butylene 2,4-furanoate) (2,4-PBF), an isomer of well-known poly(butylene 2,5-furanoate) (2,5-PBF), was synthesized through an eco-friendly solvent-free polycondensation process and processed in the form of an amorphous film by compression molding. Molecular characterization was carried out by NMR spectroscopy and GPC analysis, confirming the chemical structure and high polymerization degree. Thermal analyses evidenced a reduction of both glass-to-rubber transition and melting temperatures, as well as a detriment of crystallization capability, for 2,4-PBF with respect to 2,5-PBF.
View Article and Find Full Text PDFBuilding blocks of isohexides extended by one carbon atom at the 2- or 5-positions are now synthetically accessible by a convenient, selective, base-catalyzed epimerization of the corresponding dinitriles. Kinetic experiments using the strong organic base 1,8-diazabicyclo[5.4.
View Article and Find Full Text PDFBio-based furanics can be aromatized efficiently by sequential Diels-Alder (DA) addition and hydrogenation steps followed by tandem catalytic aromatization. With a combination of zeolite H-Y and Pd/C, the hydrogenated DA adduct of 2-methylfuran and maleic anhydride can thus be aromatized in the liquid phase and, to a certain extent, decarboxylated to give high yields of the aromatic products 3-methylphthalic anhydride and o- and m-toluic acid. Here, it is shown that a variation in the acidity and textural properties of the solid acid as well as bifunctionality offers a handle on selectivity toward aromatic products.
View Article and Find Full Text PDFRenewable aromatics can be conveniently synthesized from furanics by introducing an intermediate hydrogenation step in the Diels-Alder (DA) aromatization route, to effectively block retro-DA activity. Aromatization of the hydrogenated DA adducts requires tandem catalysis, using a metal-based dehydrogenation catalyst and solid acid dehydration catalyst in toluene. Herein it is demonstrated that the hydrogenated DA adducts can instead be conveniently converted into renewable aromatics with up to 80% selectivity in a solid-phase reaction with shorter reaction times using only an acidic zeolite, that is, without solvent or dehydrogenation catalyst.
View Article and Find Full Text PDFA novel route for the production of renewable aromatic chemicals, particularly substituted phthalic acid anhydrides, is presented. The classical two-step approach to furanics-derived aromatics via Diels-Alder (DA) aromatization has been modified into a three-step procedure to address the general issue of the reversible nature of the intermediate DA addition step. The new sequence involves DA addition, followed by a mild hydrogenation step to obtain a stable oxanorbornane intermediate in high yield and purity.
View Article and Find Full Text PDFNew carbohydrate-based polyesters were prepared from isoidide-2,5-dimethanol (extended isoidide, XII) through melt polymerization with dimethyl esters of terephthalic acid (TA) and furan-2,5-dicarboxylic acid (FDCA), yielding semi-crystalline prepolymers. Subsequent solid-state post-condensation (SSPC) gave high molecular weight (Mn =30 kg mol(-1) for FDCA) materials, the first examples of high Mn , semi-aromatic homopolyesters containing isohexide derivatives obtained via industrially relevant procedures. NMR spectroscopy showed that the stereo-configuration of XII was preserved under the applied conditions.
View Article and Find Full Text PDFWe report an efficient three-step strategy for synthesizing rigid, chiral isohexide diamines derived from 1,4:3,6-dianhydrohexitols. These biobased chiral building blocks are presently the subject of several investigations (in our and several other groups) because of their application in high-performance biobased polymers, such as polyamides and polyurethanes. Among the three possible stereo-isomers, dideoxy-diamino isoidide and dideoxy-diamino isosorbide can be synthesized from isomannide and isosorbide respectively in high yield with absolute stereo control.
View Article and Find Full Text PDF