Publications by authors named "Shanmugam Sundhar"

The presence of toxic trace elements (TEs) has resulted in a worldwide deterioration in freshwater ecosystem quality. This study aimed to analyze the distribution of TEs, including chromium (Cr), nickel (Ni), arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb), in water, sediment, and organs of Tilapia (Oreochromis mossambicus) collected from selected inland water bodies in Tamil Nadu, India. The water samples exhibited a range of concentrations for TEs: Cr varied from 0.

View Article and Find Full Text PDF

This study assesses the health risk due to heavy metals/metalloids (HMs/Ms) in edible seaweeds (Caulerpa racemosa, Kappaphycus alvarezii, and Ulva lactuca) through an in vitro bioaccessibility study. The percentage of bioabsorbed HMs/Ms in unprocessed and processed C. racemosa, U.

View Article and Find Full Text PDF

This study aimed to explore the concentrations of Se and Hg in marine fish along the Gulf of Mannar (southeast coast of India) and to assess related risks and risk-based consumption limits for children, pregnant women, and adults. Se concentrations in pelagic and benthic fish ranged from 0.278 to 0.

View Article and Find Full Text PDF

This study used inductively coupled plasma and mass spectrometry, followed by microwave digestion, to assess the concentration of six trace metals (Cr, Ni, As, Cd, Hg, and Pb) in three canned products (tuna in oil [TIO], sardine in oil [SIO], and mackerel in oil [MIO]), two pickled products (prawn pickle [PP] and fish pickle [FP]), and one smoked product (masmin) collected from Tuticorin market, southern India. Trace metal (TM) levels in canned, pickled, and smoked fish varied from 0.01 to 1.

View Article and Find Full Text PDF

This study assesses the bioaccumulation, ecological, and health risks associated with potentially toxic metals (PTMs), including Pb, Hg, Cd, As, and Cr in Hare Island, Thoothukudi. The results revealed that the concentration of PTMs in sediment, seawater, and S. wightii ranged from 0.

View Article and Find Full Text PDF

Seaweeds are widely consumed as natural seafood in various Asian countries. Chemical contaminants, such as pesticide residues (PRs), can contaminate it due to its high bio-accumulation nature. Limited research exists on the presence of PRs in edible seaweeds, their decrease in levels during cooking processes, and the evaluation of hazard indices and associated health risks to humans.

View Article and Find Full Text PDF

This study evaluates the distribution of pesticide residues (PRs) and assesses the ecological and human health risks posed by them from seawater, sediment and edible seaweeds in the Gulf of Mannar. Results showed that hexachlorocyclohexane, heptachlor, aldrin, endrin and endosulfan were the predominant PRs. The maximum concentration of PRs was observed in the monsoon and post-monsoon seasons.

View Article and Find Full Text PDF

The heavy metals (HMs) in seafood are alarming due to their biomagnification in the food chain. The concentrations of As, Cd, Hg, Pb, Cr, and Ni in both fresh and dried fish were quantified, and the potential exposure and safe intake levels for human consumption were assessed by the European Commission (EC) and the Food Safety Standard Authority of India (FSSAI). HMs concentrations ranged from 0.

View Article and Find Full Text PDF

The prevalence of biofilm forming Salmonella on different seafood contact surfaces was investigated. Out of 384 swab samples, 16.14 % and 1 % were confirmed biochemically and molecularly as Salmonella respectively.

View Article and Find Full Text PDF

Thamirabarani river acquires large untreated sewage effluents from the Tirunelveli and Thoothukudi districts of South Tamil Nadu. This study examined the concentration of trace elements in water, sediment, and phytoaccumulation potential of aquatic weeds viz., A.

View Article and Find Full Text PDF

The concentrations of eight trace elements (chromium, cobalt, copper, zinc, arsenic, cadmium, mercury and lead) in14 commercially important fish and shellfish collected from Thoothukudi along the southeast coast of India was investigated using inductively coupled plasma mass spectrometry in order to assess the health risks associated with their consumption. The concentration of trace elements ranged from 0.001 to 39.

View Article and Find Full Text PDF