Publications by authors named "Shanmugam P Elangovan"

The low temperature activity of Fe-loaded zeolites as selective catalytic reduction of NO by NH (NH -SCR) catalysts is a critical drawback for practical application. Here, we found unexpected improvement of low temperature activity by our proposed post-synthetic treatment. An Al-rich zeolite beta (Si/Al=5) is employed as the catalyst support, and the parent sample is dealuminated for higher hydrothermal stability, followed by the liquid-mediated stabilization treatment and impregnation.

View Article and Find Full Text PDF

Zeolites have been successfully employed in many catalytic reactions of industrial relevance. The severe conditions required in some processes, where high temperatures are frequently combined with the presence of steam, highlight the need of considering the evolution of the catalyst structure during the reaction. This review attempts to summarize the recently developed strategies to improve the hydrothermal framework stability of zeolites.

View Article and Find Full Text PDF

Improving the stability of porous materials for practical applications is highly challenging. Aluminosilicate zeolites are utilized for adsorptive and catalytic applications, wherein they are sometimes exposed to high-temperature steaming conditions (∼1000 °C). As the degradation of high-silica zeolites originates from the defect sites in their frameworks, feasible defect-healing methods are highly demanded.

View Article and Find Full Text PDF

MFI zeolites exchanged with various cations have gained a great deal of attention as catalysts. Increase in the ion-exchange capacity of zeolites can improve their catalytic properties by introducing more active sites; however, the ion-exchange capacity of MFI zeolites is limited by maximum aluminum content in the structure. To improve the ion-exchange capability of the MFI zeolites beyond the upper limit of the aluminosilicate MFI zeolites, we propose herein an approach to incorporate Zn(ii) in the zeolitic framework, because Zn in the framework sites generates two negative charges per atom.

View Article and Find Full Text PDF

Zeolites containing Zn in their frameworks are promising materials for ion-exchange and catalysis because of their unique ion-exchange capabilities and characteristic Lewis acidity. However, expensive organic compounds often required in their synthesis can prevent their practical uses. Here, a facile organic-free synthesis route for new zincoaluminosilicate zeolites having MOR topology, in which both Zn and Al are substituted in the framework, is demonstrated for the first time.

View Article and Find Full Text PDF

Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ.

View Article and Find Full Text PDF

Characteristics of zeolite formation, such as being kinetically slow and thermodynamically metastable, are the main bottlenecks that obstruct a fast zeolite synthesis. We present an ultrafast route, the first of its kind, to synthesize high-silica zeolite SSZ-13 in 10 min, instead of the several days usually required. Fast heating in a tubular reactor helps avoid thermal lag, and the synergistic effect of addition of a SSZ-13 seed, choice of the proper aluminum source, and employment of high temperature prompted the crystallization.

View Article and Find Full Text PDF