Publications by authors named "Shanming Hu"

Inspired by biological systems, trainable responsive materials have received burgeoning research interests for future adaptive and intelligent material systems. However, the trainable materials to date typically cannot perform active work, and the training allows only one direction of functionality change. Here, we demonstrate thermally trainable hydrogel systems consisting of two thermoresponsive polymers, where the volumetric response of the system upon phase transitions enhances or decreases through a training process above certain threshold temperature.

View Article and Find Full Text PDF

Background: Diabetes is prevalent among people with CF (PwCF) and associated with worse clinical outcomes. CFTR modulators are highly effective in improving the disease course of CF. However, the effects of elexacaftor/tezacaftor/ivacaftor (ETI) on glucose metabolism in PwCF are unclear.

View Article and Find Full Text PDF

Silicon (Si) is an auspicious anode material in next-generation lithium-ion batteries due to its exceptional theoretical gravimetric capacity, environmental friendliness, and high natural abundance. However, the practical application of Si anodes remains a "must-solve" challenge because of its drastic capacity fading that results from the inherent property of drastic volume expansion of Si during repeated lithiation and delithiation. Developing binders employed in robust electrodes has been considered an economical and practical method to affect the electrochemical performance of Si-based electrodes.

View Article and Find Full Text PDF

Background: The salivary glands of female ticks degenerate rapidly by apoptosis and autophagy after feeding. Bcl-2 family proteins play an important role in the apoptosis pathways, but the functions of these proteins in ticks are unclear. We studied Bcl-2 and Bax homologs from Rhipicephalus haemaphysaloides and determined their functions in the degeneration of the salivary glands.

View Article and Find Full Text PDF

Inhibitors of apoptosis (IAPs) are regulators of cell death and may play a role in the salivary glands of ticks during blood-feeding. We cloned the open reading frame (ORF) sequence of the IAP gene in Rhipicephalus haemaphysaloides (RhIAP). The RhIAP ORF of 1887 bp encodes a predicted protein of 607 amino acids, which contains three baculovirus IAP repeat domains and a RING finger motif.

View Article and Find Full Text PDF

Background: Apoptosis is fundamental in maintaining cell balance in multicellular organisms, and caspases play a crucial role in apoptosis pathways. It is reported that apoptosis plays an important role in tick salivary gland degeneration. Several different caspases have been found in ticks, but the interactions between them are currently unknown.

View Article and Find Full Text PDF

Ceramic electrolyte guarantees the commercial application of all-solid-state lithium batteries (ASSLBs) for its high ionic conductivity and wide voltage window. However, the large interfacial impedance between the ceramic and polymeric electrolyte is still tough issue for all-solid-state batteries. Here, a "self-sacrifice" interface established by a flexible LiAlGe(PO) (LAGP)/30% poly(propylene carbonate) (PPC) solid composite electrolyte causes a performance enhancement of the LiFePO/Li battery with a discharge specific capacity of 151 mA h g at 0.

View Article and Find Full Text PDF

A modified natural polysaccharide (carboxymethylated gellan gum) is investigated as a water-soluble high-performance binder for silicon anodes in lithium-ion batteries to improve poor cycle life and fast capacity fade of silicon anodes due to dramatic volume expansion during lithiation/delithiation process. The numberof carboxyl and acetyl groups distributed homogeneously in the modified polysaccharide polymer chain can form strong hydrogen bonds with the surface of Si particle and copper current collector, thus effectively restricting the volume change of silicon and maintaining electronic integrity of Si electrodes during repeated charge/discharge cycles. As a result, Si anodes with carboxymethylated natural polysaccharide polymer present high capacity performance, excellent rate capability, and stable cycling.

View Article and Find Full Text PDF

Offspring exposed in utero to maternal diabetes exhibit long-lasting insulin resistance, though the initiating mechanisms have received minimal experimental attention. Herein, we show that rat fetuses develop insulin resistance after only 2-day continuous exposure to isolated hyperglycemia starting on gestational day 18. Hyperglycemia-induced reductions in insulin-induced AKT phosphorylation localized primarily to fetal skeletal muscle.

View Article and Find Full Text PDF

A novel series of monodisperse star-shaped ladder-type oligo(p-phenylene)s, named as TrL-n (n=1-3), have been explored. Their thermal and electrochemical properties, fluorescence transients, photoluminescence quantum yields, density functional theory calculations, electroluminescence (EL) and amplified spontaneous emission (ASE) properties have been systematically investigated to unravel the molecular design on optoelectronic properties. The resulting materials showed excellent structural perfection, free of chemical defects, and exhibited great thermal stability (T : 404-418 °C and T : 147-184 °C) and amorphous glassy morphologies.

View Article and Find Full Text PDF

Cardiac septal overgrowth complicates 10-40% of births from diabetic mothers, but perplexingly hyperglycemia markers during pregnancy are not reliably predictive. We thus tested whether fetal exposure to hyperglycemia is sufficient to induce fetal cardiac septal overgrowth even in the absence of systemic maternal diabetes. To isolate the effects of hyperglycemia, we infused glucose into the blood supply of the left but not right uterine horn in nondiabetic pregnant rats starting on gestational day 19.

View Article and Find Full Text PDF

Embryonic exposure to excess circulating fuels is proposed to underlie diabetic embryopathy. To isolate the effects of hyperglycemia from the many systemic anomalies of diabetes, we infused 4 mg/min glucose into the left uterine artery of non-diabetic pregnant rats on gestation days (GD) 7-9. Right-sided embryos and dams exhibited no glucose elevation.

View Article and Find Full Text PDF

Ferrets are an important emerging model of cystic fibrosis related diabetes. However, there is little documented experience in the use of advanced techniques to quantify aspects of diabetes pathophysiology in the ferret. Glycemic clamps are the gold standard technique to assess both insulin sensitivity and insulin secretion in humans and animal models of diabetes.

View Article and Find Full Text PDF

Diabetes is a common comorbidity in cystic fibrosis (CF) that worsens prognosis. The lack of an animal model for CF-related diabetes (CFRD) has made it difficult to dissect how the onset of pancreatic pathology influences the emergence of CFRD. We evaluated the structure and function of the neonatal CF endocrine pancreas using a new CFTR-knockout ferret model.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor γ (PPARγ) is expressed at low levels in skeletal muscle, where it protects against adiposity and insulin resistance via unclear mechanisms. To test the hypothesis that PPARγ directly modulates skeletal muscle metabolism, we created two models that isolate direct PPARγ actions on skeletal myocytes. PPARγ was overexpressed in murine myotubes by adenotransfection and in mouse skeletal muscle by plasmid electroporation.

View Article and Find Full Text PDF

The growing fetus depends upon transfer of glucose from maternal blood to fetal tissues. Insulin and glucocorticoid impact maternal glucose metabolism, but the effects of these hormones on fetal glucose assimilation in vivo are understudied. We thus used positron emission tomography imaging to determine the disposition of [(18)F]fluorodeoxyglucose (FDG) in rats on gestational d 20, quantifying the kinetic competition of maternal tissues and fetus for glucose.

View Article and Find Full Text PDF

Background: Complex but common maternal diseases such as diabetes and obesity contribute to adverse fetal outcomes. Understanding of the mechanisms involved is hampered by difficulty in isolating individual elements of complex maternal states in vivo. We approached this problem in the context of maternal diabetes and sought an approach to expose the developing fetus in vivo to isolated hyperglycemia in the pregnant rat.

View Article and Find Full Text PDF

ODM (offspring of diabetic mothers) have an increased risk of developing metabolic and cardiovascular dysfunction; however, few studies have focused on the susceptibility to disease in offspring of mothers developing diabetes during pregnancy. We developed an animal model of late gestation diabetic pregnancy and characterized metabolic and vascular function in the offspring. Diabetes was induced by streptozotocin (50 mg/kg of body weight, intraperitoneally) in pregnant rats on gestational day 13 and was partially controlled by twice-daily injections of insulin.

View Article and Find Full Text PDF

20-carboxy-arachidonic acid (20-COOH-AA) is a metabolite of 20-hydroxyeicosatetraenoic acid (20-HETE), an eicosanoid produced from arachidonic acid by cytochrome P450 (CYP) omega-oxidases. Alcohol dehydrogenases convert 20-HETE to 20-COOH-AA, and we now find that a microsomal preparation containing recombinant human CYP4F3B converts arachidonic acid to 20-HETE and 20-COOH-AA. Studies with transfected COS-7 cell expression systems indicate that 20-COOH-AA activates peroxisome proliferators-activated receptor (PPAR) alpha and PPARgamma.

View Article and Find Full Text PDF

Cytochrome P450 (CYP) omega-oxidases convert arachidonic acid (AA) to 20-hydroxyeicosatetraenoic acid (20-HETE), a lipid mediator that modulates vascular tone. We observed that a microsomal preparation containing recombinant human CYP4F3B, which converts AA to 20-HETE, converted eicosapentaenoic acid (EPA) to 20-OH-EPA. Likewise, docosahexaenoic acid (DHA) was converted to 22-OH-DHA, indicating that human CYP4F3B also can oxidize 22-carbon omega-3 fatty acids.

View Article and Find Full Text PDF

20-Hydroxyeicosatetraenoic acid (20-HETE), an arachidonic acid (AA) metabolite synthesized by cytochrome P-450 omega-oxidases, is reported to produce vasoconstriction in the cerebral circulation. However, we find that like 14,15-epoxyeicosatrienoic acid (14,15-EET), 20-HETE produces dilation of mouse basilar artery preconstricted with U-46619 in vitro. Indomethacin inhibited the vasodilation produced by 20-HETE but not by 14,15-EET, suggesting a cyclooxygenase (COX)-dependent mechanism.

View Article and Find Full Text PDF

Epoxyeicosatrienoic acids (EETs), lipid mediators synthesized from arachidonic acid by cytochrome P-450 epoxygenases, are converted by soluble epoxide hydrolase (SEH) to the corresponding dihydroxyeicosatrienoic acids (DHETs). Originally considered as inactive degradation products of EETs, DHETs have biological activity in some systems. Here we examined the capacity of EETs and DHETs to activate peroxisome proliferator-activated receptor-alpha (PPARalpha).

View Article and Find Full Text PDF

Soluble epoxide hydrolase (sEH) plays a major role in regulating vascular epoxyeicosatrienoic acid metabolism and function, and substituted urea derivatives that inhibit sEH activity reduce blood pressure in hypertensive rats. We found that substituted urea derivatives containing a dodecanoic acid group, besides effectively inhibiting sEH, increased peroxisome proliferator-activated receptor (PPAR) alpha activity. In PPARalpha transfected COS-7 cells, treatment with 10 microM N-cyclohexyl-N'-dodecanoic acid urea (CUDA) or N-adamantanyl-N'-dodecanoic acid urea (AUDA) produced 6- and 3-fold increases, respectively, in PPARalpha activation.

View Article and Find Full Text PDF

Anandamide (AEA), an endogenous cannabinoid receptor agonist, is a potent vasodilator in the cerebral microcirculation. AEA is converted to arachidonic acid (AA) by fatty acid amidohydrolase (FAAH), and the conversion of AA to prostaglandins has been proposed as a potential mechanism for the vasodilation. Although AEA stimulated prostaglandin production by mouse cerebral microvascular endothelial cells, no [(3)H]prostaglandins were produced when these cells were incubated with [3H]AEA.

View Article and Find Full Text PDF

We investigated the effects of soluble epoxide hydrolase (sEH) inhibition on epoxyeicosatrienoic acid (EET) metabolism in intact human blood vessels, including the human saphenous vein (HSV), coronary artery (HCA), and aorta (HA). When HSV segments were perfused with 2 micromol/l 14,15-[3H]EET for 4 h, >60% of radioactivity in the perfusion medium was converted to 14,15-dihydroxyeicosatrienoic acid (DHET). Similar results were obtained with endothelium-denuded vessels.

View Article and Find Full Text PDF