Spiking neural networks and neuromorphic hardware platforms that simulate neuronal dynamics are getting wide attention and are being applied to many relevant problems using Machine Learning. Despite a well-established mathematical foundation for neural dynamics, there exists numerous software and hardware solutions and stacks whose variability makes it difficult to reproduce findings. Here, we establish a common reference frame for computations in digital neuromorphic systems, titled Neuromorphic Intermediate Representation (NIR).
View Article and Find Full Text PDFMore than 65 million individuals worldwide are estimated to have Long COVID (LC), a complex multisystemic condition, wherein patients of all ages report fatigue, post-exertional malaise, and other symptoms resembling myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS). With no current treatments or reliable diagnostic markers, there is an urgent need to define the molecular underpinnings of these conditions. By studying bioenergetic characteristics of peripheral blood lymphocytes in over 16 healthy controls, 15 ME/CFS, and 15 LC, we find both ME/CFS and LC donors exhibit signs of elevated oxidative stress, relative to healthy controls, especially in the memory subset.
View Article and Find Full Text PDFResearch organizations are critically in need of directed growth toward future interoperability and federation. The purpose of this Viewpoint is to alert the government, academia, professional societies, foundations, and industries of a further need for consideration of data in chemistry and materials as a long-term and sustained development in the US. This paper is a call for coordinated action from the government, academia, and industry to establish a national strategy and concomitant infrastructure focused on research data.
View Article and Find Full Text PDFCells are the basic units of all living matter which harness the flow of energy to drive the processes of life. While the biochemical networks involved in energy transduction are well-characterized, the energetic costs and constraints for specific cellular processes remain largely unknown. In particular, what are the energy budgets of cells? What are the constraints and limits energy flows impose on cellular processes? Do cells operate near these limits, and if so how do energetic constraints impact cellular functions? Physics has provided many tools to study nonequilibrium systems and to define physical limits, but applying these tools to cell biology remains a challenge.
View Article and Find Full Text PDFInfection with Influenza A virus can lead to the development of encephalitis and subsequent neurological deficits ranging from headaches to neurodegeneration. Post-encephalitic parkinsonism has been reported in surviving patients of H1N1 infections, but not all cases of encephalitic H1N1 infection present with these neurological symptoms, suggesting that interactions with an environmental neurotoxin could promote more severe neurological damage. The heavy metal, manganese (Mn), is a potential interacting factor with H1N1 because excessive exposure early in life can induce long-lasting effects on neurological function through inflammatory activation of glial cells.
View Article and Find Full Text PDFMissense mutations in the leucine rich repeat kinase 2 (LRRK2) gene result in late-onset Parkinson's disease. The incomplete penetrance of LRRK2 mutations in humans and LRRK2 murine models of Parkinson's disease suggests that the disease may result from a complex interplay of genetic predispositions and persistent exogenous insults. Since neuroinflammation is commonly associated with the pathogenesis of Parkinson's disease, we examine a potential role of mutant LRRK2 in regulation of the immune response and inflammatory signalling in vivo.
View Article and Find Full Text PDFCentral Nervous System inflammation has been implicated in neurodegenerative disorders including Parkinson's disease (Ransohoff, Science 353: 777-783, 2016; Kannarkat et al. J. Parkinsons Dis.
View Article and Find Full Text PDFCorrection for 'Phase stability in nanoscale material systems: extension from bulk phase diagrams' by Saurabh Bajaj et al., Nanoscale, 2015, 7, 9868-9877.
View Article and Find Full Text PDFPhase diagrams of multi-component systems are critical for the development and engineering of material alloys for all technological applications. At nano dimensions, surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and phase stability. In this work, it is shown that these surfaces at small dimensions affect the relative equilibrium thermodynamics of the different phases.
View Article and Find Full Text PDFAlthough influenza is primarily a respiratory disease, it has been shown, in some cases, to induce encephalitis, including people acutely infected with the pandemic A/California/04/2009 (CA/09) H1N1 virus. Based on previous studies showing that the highly pathogenic avian influenza (HPAI) A/Vietnam/1203/2004 H5N1 virus was neurotropic, induced CNS inflammation and a transient parkinsonism, we examined the neurotropic and inflammatory potential of the CA/09 H1N1 virus in mice. Following intranasal inoculation, we found no evidence for CA/09 H1N1 virus neurotropism in the enteric, peripheral or central nervous systems.
View Article and Find Full Text PDFp75 is expressed among Purkinje cells in the adult cerebellum, but its function has remained obscure. Here we report that p75 is involved in maintaining the frequency and regularity of spontaneous firing of Purkinje cells. The overall spontaneous firing activity of Purkinje cells was increased in p75(-/-) mice during the phasic firing period due to a longer firing period and accompanying reduction in silence period than in the wild type.
View Article and Find Full Text PDFA new method, the Extended Temperature-Accelerated Dynamics (XTAD), is introduced for modeling long-timescale evolution of large rare-event systems. The method is based on the Temperature-Accelerated Dynamics approach [M. Sørensen and A.
View Article and Find Full Text PDFFirst-principles calculations are applied to study the formation energies of various divacancy defects in armchair and zigzag carbon nanotubes of varying diameter, and the transport properties for the corresponding structures. Our explicit ab initio calculations confirm that the lateral 585 divacancy is the most stable defect in small diameter tubes, with the 555 777 divacancy becoming more stable in armchair tubes larger than (30, 30). Evaluating the electron transmission as a function of diameter and chirality for a range of defects, the strongest scattering is found for the 555 777 divacancy configuration, which is observable in electrical spectroscopy experiments.
View Article and Find Full Text PDFBackground: Methylphenidate (MPH) is a psychostimulant that exerts its pharmacological effects via preferential blockade of the dopamine transporter (DAT) and the norepinephrine transporter (NET), resulting in increased monoamine levels in the synapse. Clinically, methylphenidate is prescribed for the symptomatic treatment of ADHD and narcolepsy; although lately, there has been an increased incidence of its use in individuals not meeting the criteria for these disorders. MPH has also been misused as a "cognitive enhancer" and as an alternative to other psychostimulants.
View Article and Find Full Text PDFThe use of methamphetamine (METH) as recreational drugs is a growing problem worldwide with recent concerns that it might cause long-lasting harmful effects to the human brain. METH is an illicit drug that is known to exert neurotoxic effects on both dopaminergic and serotonergic neural systems. Our laboratory has been studying the biochemical mechanisms underlying METH-induced neurotoxic effects both in vivo and in vitro.
View Article and Find Full Text PDFBackground: Autophagy, an intracellular response to stress, is characterized by double membrane cytosolic vesicles called autophagosomes. Prolonged autophagy is known to result in autophagic (Type II) cell death. This study examined the potential role of an autophagic response in cultured cerebellar granule neurons challenged with excitotoxin N-methyl-D-aspartate (NMDA).
View Article and Find Full Text PDFMethods Mol Biol
February 2010
Methamphetamine (METH) is recognized as one of the most abused psychostimulants in the USA. METH is an illicit drug that is known to exert neurotoxic effects on both dopaminergic and serotonergic neural systems. Our laboratory has been studying the biochemical mechanisms underlying MDMA and METH-induced neurotoxic effects both in vivo and in vitro.
View Article and Find Full Text PDFBackground: Early stent thrombosis following coronary angioplasty is associated with high mortality and morbidity. Different methods of treatment, including emergency coronary angioplasty, have been tried, but with variable results. This is a study of the results of systemic thrombolytic therapy in the treatment of early stent thrombosis.
View Article and Find Full Text PDFThe rapidly growing field of neuroproteomics has expanded to track global proteomic changes underlying various neurological conditions such as traumatic brain injury (TBI), stroke, and Alzheimer's disease. TBI remains a major health problem with approximately 2 million incidents occurring annually in the United States, yet no affective treatment is available despite several clinical trials. The absence of brain injury diagnostic biomarkers was identified as a significant road-block to therapeutic development for brain injury.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2008
Autophagy has been implicated in several neurodegenerative diseases and recently its role in acute brain injury has received increased interest. In our study, we investigated the profiles of autophagy-linked proteins (MAP-LC3 (Atg8), beclin-1 (Atg6) and the beclin-1-binding protein, bcl-2, following controlled cortical impact injury in rats--a model for moderate-to-severe traumatic brain injury. We observed significant increases in the levels of the processed form of LC3 (LC3-II) in the ipsilateral cortex 2h to 2 days after injury when compared to sham.
View Article and Find Full Text PDFExpert Rev Proteomics
April 2008
While proteomics has excelled in several disciplines in biology (cancer, injury and aging), neuroscience and psychiatryproteomic studies are still in their infancy. Several proteomic studies have been conducted in different areas of psychiatric disorders, including drug abuse (morphine, alcohol and methamphetamine) and other psychiatric disorders (depression, schizophrenia and psychosis). However, the exact cellular and molecular mechanisms underlying these conditions have not been fully investigated.
View Article and Find Full Text PDFMethamphetamine (METH) is recognized as one of the most abused psychostimulants in the United States. METH is an illicit drug that is known to exert neurotoxic effects on both dopaminergic and serotonergic neural systems both in vivo and in vitro. Our laboratory and others have been studying the biochemical mechanisms underlying METH-induced neurotoxicity.
View Article and Find Full Text PDFIn the semiconductor industry, the use of new materials has been increasing with the advent of nanotechnology. As critical dimensions decrease, and the number of materials increases, the interactions between heterogeneous materials themselves and processing increase in complexity. Traditionally, applications of ab initio techniques are confined to electronic structure and band gap calculations of bulk materials, which are then used in coarse-grained models such as mesoscopic and continuum models.
View Article and Find Full Text PDFCollapsin response mediator proteins (CRMPs) are important molecules in neurite outgrowth and axonal guidance. Within the CRMP family, CRMP-2 has been implicated in several neurological diseases (Alzheimer's, epilepsy, and ischemia). Here, we investigated the integrity of CRMPs (CRMP-1, -2, -4, -5) after in vitro neurotoxin treatment and in vivo traumatic brain injury (TBI).
View Article and Find Full Text PDFgamma-Hydroxybutyric acid (GHB), an endogenous organic acid catabolite of gamma-aminobutyric acid (GABA), has been shown to have tissue-protective effects in various organs, including the brain. We examined the potential neuroprotective effect of GHB and its chemical precursors, gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD), in the rodent ischemic stroke model by intraluminal filament middle cerebral artery occlusion (MCAO). Adult male Sprague-Dawley rats underwent transient left-sided MCAO and received intraperitoneal treatment with 300 mg/kg of GHB, GBL, 1,4-BD, or control vehicle given at 30 min before, as well as 180 and 360 min after the onset of ischemia.
View Article and Find Full Text PDF