Objective: Adeno-associated viruses (AAVs) are widely used as gene therapy vectors due to their safety, stability, and long-term expression characteristics. The objective of this work is to develop an aqueous two-phase system (ATPS) as a universal platform for the separation and purification of AAVs.
Results: This study utilized polyethylene glycol (PEG)/salt ATPSs to separate and purify various AAV serotypes, including AAV5, AAV8, and AAV9, which focusing on serotype-specific performance and partial empty capsid removal.
Development of a next-generation chromatographic model, capable of simultaneously meeting academic demands for thermodynamic consistency and industrial requirements in everyday project work, has become a focal point of research. In this study, anti-Langmuirian to Langmuirian (AL-L) elution behavior was observed in cation-exchange chromatographic separation of charge variants of industrial Fc-fusion proteins. To characterize this behavior, the multi-protein Mollerup activity model was integrated into the steric mass action (SMA) model, resulting in a new model named the generalized ion-exchange (nGIEX) isotherm for multi-protein systems.
View Article and Find Full Text PDFThe applications of continuous manufacturing technology in biopharmaceuticals require advanced design, monitoring, and control due to its complexity. Traditional mechanistic models, which rely on numerical solutions, suffer from long computational times, making them unsuitable for the timely demands of continuous processes and digital twin applications in biomanufacturing. This issue significantly limits the capability for real-time optimization and control.
View Article and Find Full Text PDFIn-depth knowledge of the pore structure of chromatographic resins is instrumental for better mechanistic understanding of adsorption performance, which can be translated into strategies to guide the design of new resins. Aiming to reveal the underlying reasons of low mRNA adsorption capacities of commercial oligo-dT resins, three-dimensional (3D) pore structure reconstruction was applied to relate key pore properties to the adsorption performance. The static 3D pore analysis revealed that the amount and connectivity of the accessible pores for 100 nm-sized mRNA reduced by over 90% and 46% compared with initial pore structure of resins, respectively, which led to discontinuous transport paths for mRNA.
View Article and Find Full Text PDFThe single-component Mollerup model, with over 40 direct applications and 442 citations, is the most widely used activity model for chromatographic mechanistic modeling. Many researchers have extended this formula to multi-component systems by directly adding subscripts, a modification deemed thermodynamically inconsistent (referred to as the reference model). In this work, we rederived the asymmetric activity model for multi-component systems, using the van der Waals equation of state, and termed it the multi-component Mollerup model.
View Article and Find Full Text PDFMechanistic models are powerful tools for chromatographic process development and optimization. However, hydrophobic interaction chromatography (HIC) mechanistic models lack an effective and logical parameter estimation method, especially for multi-component system. In this study, a parameter-by-parameter method for multi-component system (called as mPbP-HIC) was derived based on the retention mechanism to estimate the six parameters of the Mollerup isotherm for HIC.
View Article and Find Full Text PDFParticle size is a critical parameter of chromatographic resins that significantly affects protein separation. In this study, effects of resin particle sizes (31.26 μm, 59.
View Article and Find Full Text PDFDeveloping an accurate and reliable model for chromatographic separation that meets regulatory requirements and ensures consistency in model development remains challenging. In order to address this challenge, a standardized approach was proposed in this study with ion-exchange chromatography (IEC). The approach includes the following steps: liquid flow identification, system and column-specific parameters determination and validation, multi-component system identification, protein amount validation, steric mass action parameters determination and evaluation, and validation of the calibrated model's generalization ability.
View Article and Find Full Text PDFHydrophobic interaction chromatography (HIC) is used as a critical polishing step in the downstream processing of biopharmaceuticals. Normally the process development of HIC is a cumbersome and time-consuming task, and the mechanical models can provide a powerful tool to characterize the process, assist process design and accelerate process development. However, the current estimation of model parameters relies on the inverse method, which lacks an efficient and logical parameter estimation strategy.
View Article and Find Full Text PDFMulti-column periodic counter-current chromatography is a promising technology for continuous antibody capture. However, dynamic changes due to disturbances and drifts pose some potential risks for continuous processes during long-term operation. In this study, a model-based approach was used to describe the changes in breakthrough curves with feedstock variations in target proteins and impurities.
View Article and Find Full Text PDFNumerical method is widely used for solving the mechanistic models of chromatography process, but it is time-consuming and hard to response in real-time. Physics-informed neural network (PINN) as an emerging technology combines the structure of neural network with physics laws, and is getting noticed for solving physics problems with a balanced accuracy and calculation speed. In this research, a proof-of-concept study was carried out to apply PINN to chromatography process simulation.
View Article and Find Full Text PDFContinuous manufacturing in monoclonal antibody production has generated increased interest due to its consistent quality, high productivity, high equipment utilization, and low cost. One of the major challenges in realizing continuous biological manufacturing lies in implementing continuous chromatography. Given the complex operation mode and various operation parameters, it is challenging to develop a continuous process.
View Article and Find Full Text PDFThe multicolumn counter-current solvent gradient purification (MCSGP) method has proven effective in addressing the issue of elution profile overlap for difficult-to-separate proteins, leading to improved purity and recovery. However, during the MCSGP process, the flow rate and proportion of loaded proteins undergo changes, causing a significant discrepancy between the elution profiles of batch process design and the actual MCSGP process. This mismatch negatively impacts the purity and recovery of the target protein.
View Article and Find Full Text PDFMechanistic models play a crucial role in the process development and optimization of ion-exchange chromatography (IEC). Recent researches in steric mass action (SMA) model have heightened the need for better estimation of nonlinear parameter, steric shielding factor σ. In this work, a straightforward approach combination of simplified linear approximation (SLA) and inverse method (IM) was proposed to initialize and further determine σ, respectively.
View Article and Find Full Text PDFIon exchange chromatography (IEC) is one of the most widely-used techniques for protein separation and has been characterized by mechanistic models. However, the time-consuming and cumbersome model calibration hinders the application of mechanistic models for process development. A new methodology called "parameter-by-parameter method (PbP)" was proposed with mechanistic derivations of the steric mass action (SMA) model of IEC.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
October 2022
Short peptide biomimetic chromatography technology as a developing protein separation technology has huge potential for antibody purification. In this study, four tetrapeptide ligands (Ac-FYKH, Ac-YEHF, Ac-YFLH and Ac-FYHI) with high potential binding ability to antibody were selected for the optimal ligand to antibody purification. The results showed that Ac-YEHF-4FF resin had higher binding capacity and selectivity for hIgG among the four resins.
View Article and Find Full Text PDFMulti-column counter-current chromatography is an advanced technology used for continuous capture processes to improve process productivity, resin capacity utilization and product consistency. However, process development is difficult due to process complexity. In this work, some general and convenient guidances for three-column periodic counter-current chromatography (3C-PCC) were developed.
View Article and Find Full Text PDFMolecular interactions between ligands and target biomolecules are crucial in the development of chromatographic techniques for the separation and purification of biotherapeutics. In this study, the role of functional moieties on a mixed-mode ligand (phenylalanine-tyrosine-glutamate-5-aminobenzimidazole) for human immunoglobulin G purification was investigated and a detailed mechanism was discussed. A similar ligand with glutamic acid substituted by glutamine (phenylalanine-tyrosine-glutamine-5-aminobenzimidazole) together with other resins including a commercial resin (CM Bestarose Fast Flow), phenylalanine-tyrosine-glutamate, glutamate-5-aminobenzimidazole, and 5-aminobenzimidazole resins were prepared for comparison.
View Article and Find Full Text PDFThe cellulase cocktail of marine Aspergillus niger exhibited salt-tolerant and thermostable properties, which is of great potential in industrial application. In order to excavate the single tolerant cellulase components from complex cellulase cocktail, constitutive homologous expression was employed for direct obtainment of the endoglucanase (AnEGL). Enzymatic property study revealed that AnEGL exhibited a property of salt tolerance and a strong thermostability in high salinity environment.
View Article and Find Full Text PDFThe advancement of recombinant virus-like particle-based vaccines has attracted global attention owing to substantially safety and high efficacy in provoking a protective immunity against various chronic and infectious diseases in humans and animals. A robust, low-cost, and scalability separation and purification technology is of utmost importance in the downstream processing of recombinant virus-like particles to produce affordable and safe vaccines. Being a relatively simple, environmentally friendly, and efficient biomolecules recovery approach, aqueous two-phase systems have received great attention from researchers worldwide.
View Article and Find Full Text PDFDownstream processing of mAb charge variants is difficult owing to their similar molecular structures and surface charge properties. This study aimed to apply a novel twin-column continuous chromatography (called N-rich mode) to separate and enrich acidic variants of an IgG1 mAb. Besides, a comparison study with traditional scaled-up batch-mode cation exchange (CEX) chromatography was conducted.
View Article and Find Full Text PDFGamma-aminobutyric acid (GABA), an important bioactive compound, is synthesized through the decarboxylation of L-glutamate (L-Glu) by glutamate decarboxylase (GAD). The use of lactic acid bacteria (LAB) as catalysts opens interesting avenues for the biosynthesis of food-grade GABA. However, a key obstacle involved in the improvement of GABA production is how to resolve the discrepancy of optimal pH between the intracellular GAD activity and cell growth.
View Article and Find Full Text PDFContinuous capture with affinity chromatography is one of the most important units for continuous manufacturing of monoclonal antibody (mAb). Due to the complexity of three-column periodic counter-current chromatography (3C-PCC), three approaches (experimental, model-based, and simplified approaches) were studied for process development and optimization. The effects of residence time for interconnected load (RT ), breakthrough percentage of the first column for interconnected load (s) and feed protein concentration (c ) on productivity and capacity utilization were focused.
View Article and Find Full Text PDFContinuous bioprocessing is a promising trend in biopharmaceutical production, and multi-column continuous chromatography shows advantages of high productivity, high resin capacity utilization, small footprint, low buffer consumption and less waste. Due to the complexity and dynamic nature of continuous processing, traditional experiment-based approaches are often time-consuming and inefficient. In this review, model-assisted approaches were focused and their applications in continuous chromatography process development, validation and control were discussed.
View Article and Find Full Text PDF