Publications by authors named "Shanika Yadav"

[FeFe]-hydrogenase is nature's most efficient proton reducing and H-oxidizing enzyme. However, biotechnological applications are hampered by the O sensitivity of this metalloenzyme, and the mechanism of aerobic deactivation is not well understood. Here, we explore the oxygen sensitivity of four mimics of the organometallic active site cofactor of [FeFe]-hydrogenase, [Fe(adt)(CO)(CN)] and [Fe(pdt)(CO)(CN)] ( = 1, 2) as well as the corresponding cofactor variants of the enzyme by means of infrared, Mössbauer, and NMR spectroscopy.

View Article and Find Full Text PDF

The active site cofactor of [FeFe]-hydrogenases consists of a cubane [4Fe-4S]-cluster and a unique [2Fe-2S]-cluster, harboring unusual CO- and CN-ligands. The biosynthesis of the [2Fe-2S]-cluster requires three dedicated maturation enzymes called HydG, HydE and HydF. HydG and HydE are both involved in synthesizing a [2Fe-2S]-precursor, still lacking parts of the azadithiolate (adt) moiety that bridge the two iron atoms.

View Article and Find Full Text PDF

[FeFe]-hydrogenases are efficient H converting biocatalysts that are inhibited by formaldehyde (HCHO). The molecular mechanism of this inhibition has so far not been experimentally solved. Here, we obtained high-resolution crystal structures of the HCHO-treated [FeFe]-hydrogenase CpI from , showing HCHO reacts with the secondary amine base of the catalytic cofactor and the cysteine C299 of the proton transfer pathway which both are very important for catalytic turnover.

View Article and Find Full Text PDF

[FeFe]-hydrogenases are capable of reducing protons at a high rate. However, molecular oxygen (O ) induces the degradation of their catalytic cofactor, the H-cluster, which consists of a cubane [4Fe4S] subcluster (4Fe ) and a unique diiron moiety (2Fe ). Previous attempts to prevent O -induced damage have focused on enhancing the protein's sieving effect for O by blocking the hydrophobic gas channels that connect the protein surface and the 2Fe .

View Article and Find Full Text PDF

The active site of [FeFe]-hydrogenases contains a cubane [4Fe-4S]-cluster and a unique diiron cluster with biologically unusual CO and CN ligands. The biogenesis of this diiron site, termed [2Fe ], requires the maturation proteins HydE, HydF and HydG. During the maturation process HydF serves as a scaffold protein for the final assembly steps and the subsequent transfer of the [2Fe ] precursor, termed [2Fe ], to the [FeFe]-hydrogenase.

View Article and Find Full Text PDF

The high turnover rates of [FeFe]-hydrogenases under mild conditions and at low overpotentials provide a natural blueprint for the design of hydrogen catalysts. However, the unique active site (H-cluster) degrades upon contact with oxygen. The [FeFe]-hydrogenase from (CbA5H) is characterized by the flexibility of its protein structure, which allows a conserved cysteine to coordinate to the active site under oxidative conditions.

View Article and Find Full Text PDF

While hydrogen plays an ever-increasing role in modern society, nature has utilized hydrogen since a very long time as an energy carrier and storage molecule. Among the enzymatic systems that metabolise hydrogen, [FeFe]-hydrogenases are one of the most powerful systems to perform this conversion. In this light, we will herein present an overview on developments in [FeFe]-hydrogenase research with a strong focus on synthetic mimics and their application within the native enzymatic environment.

View Article and Find Full Text PDF

[FeFe] hydrogenases are highly efficient catalysts for reversible dihydrogen evolution. H turnover involves different catalytic intermediates including a recently characterized hydride state of the active site (H-cluster). Applying cryogenic infrared and electron paramagnetic resonance spectroscopy to an [FeFe] model hydrogenase from (HydA1), we have discovered two new hydride intermediates and spectroscopic evidence for a bridging CO ligand in two reduced H-cluster states.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjvd73vq48jjh7uugoro6b91rr9hppr62): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once