Many cells synthesize significant quantities of zwitterionic osmolytes to cope with the osmotic stress induced by excess salt. In addition to their primary role in balancing osmotic pressure, these osmolytes also help stabilize protein structure and restore enzymatic activity compromised by high ionic strength. This osmoprotective effect has been studied extensively, but its electrostatic aspects have somehow escaped the mainstream.
View Article and Find Full Text PDFOsmolytes, small molecules synthesized by all organisms, play a crucial role in tuning protein stability and function under variable external conditions. Despite their electrical neutrality, osmolyte action is entwined with that of cellular salts and protons in a mechanism only partially understood. To elucidate this mechanism, we utilize an ultrahigh-resolution frequency modulation-AFM for measuring the effect of two biological osmolytes, urea and glycerol, on the surface charge of silica, an archetype protic surface with a pK value similar to that of acidic amino acids.
View Article and Find Full Text PDF