Publications by authors named "Shangyao Qin"

In the mammalian central nervous system (CNS), astrocytes are the ubiquitous glial cells that have complex morphological and molecular characteristics. These fascinating cells play essential neurosupportive and homeostatic roles in the healthy CNS and undergo morphological, molecular, and functional changes to adopt so-called 'reactive' states in response to CNS injury or disease. In recent years, interest in astrocyte research has increased dramatically and some new biological features and roles of astrocytes in physiological and pathological conditions have been discovered thanks to technological advances.

View Article and Find Full Text PDF

Introduction: Ectopic expression of transcription factor-mediated in vivo neuronal reprogramming provides promising strategy to compensate for neuronal loss, while its further clinical application may be hindered by delivery and safety concerns. As a novel and attractive alternative, small molecules may offer a non-viral and non-integrative chemical approach for reprogramming cell fates. Recent definitive evidences have shown that small molecules can convert non-neuronal cells into neurons in vitro.

View Article and Find Full Text PDF

Topoisomerase IIA (TOP2a) has traditionally been known as an important nuclear enzyme that resolves entanglements and relieves torsional stress of DNA double strands. However, its function in genomic transcriptional regulation remains largely unknown, especially during adult neurogenesis. Here, we show that TOP2a is preferentially expressed in neurogenic niches in the brain of adult mice, such as the subventricular zone (SVZ).

View Article and Find Full Text PDF

Direct reprogramming of astrocytes into neurons opens up a new avenue for neuroregenerative medicine. However, the poor understanding of the molecular mechanisms underpinning the latent neurogenic program in astrocytes has largely restricted this strategy towards safe and effective clinical therapies. Immunocytochemistry, immunohistochemistry, western blotting, qRT-PCR, gene knockdown and fate-mapping are performed to analyze the role of NOTCH1 signaling in regulation of the latent neurogenic program in reactive astrocytes after spinal cord injury.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most lethal primary tumor in the human brain and lacks favorable treatment options. Sex differences in the outcome of GBM are broadly acknowledged, but the underlying molecular mechanisms remain largely unknown. To identify the sex-dependent critical genes in the progression of GBM, raw data from several microarray datasets with the same array platform were downloaded from the Gene Expression Omnibus (GEO) database.

View Article and Find Full Text PDF

NG2-glia are a major type of glial cells that are widely distributed in the central nervous system (CNS). Under physiological conditions, they mainly differentiate into oligodendrocytes and contribute to the myelination of axons, so they are generally called oligodendrocyte progenitor cells. Emerging evidence suggests that NG2-glia not only act as the precursors of oligodendrocytes but also possess many other biological properties and functions.

View Article and Find Full Text PDF

Direct conversion of readily available non-neural cells from patients into induced neurons holds great promise for neurological disease modeling and cell-based therapy. Olfactory ensheathing cells (OECs) is a unique population of glia in olfactory nervous system. Based on the regeneration-promoting properties and the relative clinical accessibility, OECs are attracting increasing attention from neuroscientists as potential therapeutic agents for use in neural repair.

View Article and Find Full Text PDF

Direct conversion of non-neural cells into induced neurons holds great promise for brain repair. As the most common malignant tumor in the central nervous system, glioma is currently incurable due to its exponential growth and invasive behavior. Given that neurons are irreversible postmitotic cells, reprogramming glioma cells into terminally differentiated neuron-like cells represents a potential approach to inhibit brain tumor development.

View Article and Find Full Text PDF

Astrocytes become reactive in response to spinal cord injury (SCI) and ultimately form a histologically apparent glial scar at the lesion site. It is controversial whether astrocytic scar is detrimental or beneficial to the axonal regeneration and SCI repair. Therefore, much effort has focused on understanding the functions of reactive astrocytes.

View Article and Find Full Text PDF

The adult CNS has poor ability to replace degenerated neurons following injury or disease. Recently, direct reprogramming of astrocytes into induced neurons has been proposed as an innovative strategy toward CNS repair. As a cell population that shows high diversity on physiological properties and functions depending on their spatiotemporal distribution, however, whether the astrocyte heterogeneity affect neuronal reprogramming is not clear.

View Article and Find Full Text PDF

Background: Neural stem cells (NSCs) have unique biological characteristics such as continuous proliferation and multipotential differentiation, providing a possible method for restoration of central nervous system (CNS) function after injury or disease. NSCs and astrocytes share many similar biological properties including cell morphology and molecular expression and can trans-differentiate into each other under certain conditions. However, characteristic genes specifically expressed by NSCs have not been well described.

View Article and Find Full Text PDF

As a major class of glial cells, astrocytes have been indicated to play multi-roles in physiological and pathological brain. Astrocyte cultures derived from postnatal mouse brains have been extensively used to characterize their biological properties. However, the inability to culture adult mouse primary astrocytes has long stymied studies of function in adult brain.

View Article and Find Full Text PDF

Topoisomerases are nuclear enzymes that regulate the overwinding or underwinding of DNA helix during replication, transcription, recombination, repair, and chromatin remodeling. These enzymes perform topological transformations by providing a transient DNA break, through which the unique problems of DNA entanglement that occur owing to unwinding and rewinding of the DNA helix can be resolved. In mammals, topoisomerases are classified into two types, type I topoisomerase (Top1) and type II topoisomerase (Top2), depending on the number of strands cut in one round of action.

View Article and Find Full Text PDF

Glial cell response to injury has been well documented in the pathogenesis after traumatic brain injury (TBI) and spinal cord injury (SCI). Although microglia, the resident macrophages in the central nervous system (CNS), are responsible for clearing debris and toxic substances, excessive activation of these cells will lead to exacerbated secondary damage by releasing a variety of inflammatory and cytotoxic mediators and ultimately influence the subsequent repair after CNS injury. In fact, inhibition of microgliosis represents a therapeutic strategy for CNS trauma.

View Article and Find Full Text PDF